Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection

We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-11, Vol.122 (11), p.11,086-11,099
Hauptverfasser: Price, L., Swisdak, M., Drake, J. F., Burch, J. L., Cassak, P. A., Ergun, R. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11,099
container_issue 11
container_start_page 11,086
container_title Journal of geophysical research. Space physics
container_volume 122
creator Price, L.
Swisdak, M.
Drake, J. F.
Burch, J. L.
Cassak, P. A.
Ergun, R. E.
description We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe∼(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out‐of‐plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out‐of‐plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to ρeρi than the ρe or de scalings seen in 2‐D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region. Key Points Three‐dimensional particle‐in‐cell simulations of an MMS electron diffusion region encounter at the magnetopause were performed Characteristics of the turbulence are identified and are consistent with an electromagnetic branch of the lower hybrid drift instability The characteristic scales of the density and current are controlled by turbulence and are a hybrid of the electron and ion Larmor radii
doi_str_mv 10.1002/2017JA024227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1978089866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978089866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4118-c829c4b655048c01eccd1ffa393898d78a9f55d2eb26dfcd8601f870177142033</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWGpvPsCCV1cnyX4kx1K1WipCreeQZie6ZbupSZfSm4_gM_okplTBk3OZrx9__jOEnFO4ogDsmgEtJ0NgGWPlEekxWshUZsCOf2su4JQMQlhCDBFHNO-Rybzzi67B1mBSt8n8zSN-fXze1CtsQ-1a3STP9apr9CY2IXE2edSvLW7cWncBkxka17Zo9tszcmJ1E3Dwk_vk5e52PrpPp0_jh9FwmpqMUpEawaTJFkWeQyYMUDSmotZqHg1KUZVCS5vnFcMFKyprKlEAtaKM15U0Y8B5n1wcdNfevXcYNmrpOh-dBkVlKSCqFEWkLg-U8S4Ej1atfb3SfqcoqP3D1N-HRZwf8G3d4O5fVk3Gs2HOJQj-DY3ObDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978089866</pqid></control><display><type>article</type><title>Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Price, L. ; Swisdak, M. ; Drake, J. F. ; Burch, J. L. ; Cassak, P. A. ; Ergun, R. E.</creator><creatorcontrib>Price, L. ; Swisdak, M. ; Drake, J. F. ; Burch, J. L. ; Cassak, P. A. ; Ergun, R. E.</creatorcontrib><description>We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe∼(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out‐of‐plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out‐of‐plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to ρeρi than the ρe or de scalings seen in 2‐D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region. Key Points Three‐dimensional particle‐in‐cell simulations of an MMS electron diffusion region encounter at the magnetopause were performed Characteristics of the turbulence are identified and are consistent with an electromagnetic branch of the lower hybrid drift instability The characteristic scales of the density and current are controlled by turbulence and are a hybrid of the electron and ion Larmor radii</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024227</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Control stability ; Diffusion ; Drift ; Electric fields ; Electron diffusion ; Electrons ; Free energy ; Instability ; Larmor radius ; lower hybrid drift instability ; Magnetic reconnection ; Magnetopause ; Magnetopause reconnection ; Magnetospheres ; MMS ; Particle in cell technique ; Simulation ; Turbulence ; Viscosity</subject><ispartof>Journal of geophysical research. Space physics, 2017-11, Vol.122 (11), p.11,086-11,099</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4118-c829c4b655048c01eccd1ffa393898d78a9f55d2eb26dfcd8601f870177142033</citedby><cites>FETCH-LOGICAL-c4118-c829c4b655048c01eccd1ffa393898d78a9f55d2eb26dfcd8601f870177142033</cites><orcidid>0000-0002-3096-8579 ; 0000-0001-9182-7609 ; 0000-0002-5435-3544 ; 0000-0002-5938-1050 ; 0000-0002-9150-1841 ; 0000-0003-0452-8403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JA024227$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JA024227$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids></links><search><creatorcontrib>Price, L.</creatorcontrib><creatorcontrib>Swisdak, M.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Cassak, P. A.</creatorcontrib><creatorcontrib>Ergun, R. E.</creatorcontrib><title>Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection</title><title>Journal of geophysical research. Space physics</title><description>We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe∼(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out‐of‐plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out‐of‐plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to ρeρi than the ρe or de scalings seen in 2‐D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region. Key Points Three‐dimensional particle‐in‐cell simulations of an MMS electron diffusion region encounter at the magnetopause were performed Characteristics of the turbulence are identified and are consistent with an electromagnetic branch of the lower hybrid drift instability The characteristic scales of the density and current are controlled by turbulence and are a hybrid of the electron and ion Larmor radii</description><subject>Control stability</subject><subject>Diffusion</subject><subject>Drift</subject><subject>Electric fields</subject><subject>Electron diffusion</subject><subject>Electrons</subject><subject>Free energy</subject><subject>Instability</subject><subject>Larmor radius</subject><subject>lower hybrid drift instability</subject><subject>Magnetic reconnection</subject><subject>Magnetopause</subject><subject>Magnetopause reconnection</subject><subject>Magnetospheres</subject><subject>MMS</subject><subject>Particle in cell technique</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Viscosity</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWGpvPsCCV1cnyX4kx1K1WipCreeQZie6ZbupSZfSm4_gM_okplTBk3OZrx9__jOEnFO4ogDsmgEtJ0NgGWPlEekxWshUZsCOf2su4JQMQlhCDBFHNO-Rybzzi67B1mBSt8n8zSN-fXze1CtsQ-1a3STP9apr9CY2IXE2edSvLW7cWncBkxka17Zo9tszcmJ1E3Dwk_vk5e52PrpPp0_jh9FwmpqMUpEawaTJFkWeQyYMUDSmotZqHg1KUZVCS5vnFcMFKyprKlEAtaKM15U0Y8B5n1wcdNfevXcYNmrpOh-dBkVlKSCqFEWkLg-U8S4Ej1atfb3SfqcoqP3D1N-HRZwf8G3d4O5fVk3Gs2HOJQj-DY3ObDE</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Price, L.</creator><creator>Swisdak, M.</creator><creator>Drake, J. F.</creator><creator>Burch, J. L.</creator><creator>Cassak, P. A.</creator><creator>Ergun, R. E.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid><orcidid>https://orcid.org/0000-0001-9182-7609</orcidid><orcidid>https://orcid.org/0000-0002-5435-3544</orcidid><orcidid>https://orcid.org/0000-0002-5938-1050</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid></search><sort><creationdate>201711</creationdate><title>Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection</title><author>Price, L. ; Swisdak, M. ; Drake, J. F. ; Burch, J. L. ; Cassak, P. A. ; Ergun, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4118-c829c4b655048c01eccd1ffa393898d78a9f55d2eb26dfcd8601f870177142033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Control stability</topic><topic>Diffusion</topic><topic>Drift</topic><topic>Electric fields</topic><topic>Electron diffusion</topic><topic>Electrons</topic><topic>Free energy</topic><topic>Instability</topic><topic>Larmor radius</topic><topic>lower hybrid drift instability</topic><topic>Magnetic reconnection</topic><topic>Magnetopause</topic><topic>Magnetopause reconnection</topic><topic>Magnetospheres</topic><topic>MMS</topic><topic>Particle in cell technique</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, L.</creatorcontrib><creatorcontrib>Swisdak, M.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Cassak, P. A.</creatorcontrib><creatorcontrib>Ergun, R. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, L.</au><au>Swisdak, M.</au><au>Drake, J. F.</au><au>Burch, J. L.</au><au>Cassak, P. A.</au><au>Ergun, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-11</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>11,086</spage><epage>11,099</epage><pages>11,086-11,099</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe∼(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out‐of‐plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out‐of‐plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to ρeρi than the ρe or de scalings seen in 2‐D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region. Key Points Three‐dimensional particle‐in‐cell simulations of an MMS electron diffusion region encounter at the magnetopause were performed Characteristics of the turbulence are identified and are consistent with an electromagnetic branch of the lower hybrid drift instability The characteristic scales of the density and current are controlled by turbulence and are a hybrid of the electron and ion Larmor radii</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024227</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid><orcidid>https://orcid.org/0000-0001-9182-7609</orcidid><orcidid>https://orcid.org/0000-0002-5435-3544</orcidid><orcidid>https://orcid.org/0000-0002-5938-1050</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-11, Vol.122 (11), p.11,086-11,099
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1978089866
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Control stability
Diffusion
Drift
Electric fields
Electron diffusion
Electrons
Free energy
Instability
Larmor radius
lower hybrid drift instability
Magnetic reconnection
Magnetopause
Magnetopause reconnection
Magnetospheres
MMS
Particle in cell technique
Simulation
Turbulence
Viscosity
title Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20in%20Three%E2%80%90Dimensional%20Simulations%20of%20Magnetopause%20Reconnection&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Price,%20L.&rft.date=2017-11&rft.volume=122&rft.issue=11&rft.spage=11,086&rft.epage=11,099&rft.pages=11,086-11,099&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024227&rft_dat=%3Cproquest_cross%3E1978089866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978089866&rft_id=info:pmid/&rfr_iscdi=true