Turbulence in Three‐Dimensional Simulations of Magnetopause Reconnection
We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2017-11, Vol.122 (11), p.11,086-11,099 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present detailed analysis of the turbulence observed in three‐dimensional particle‐in‐cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe∼(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out‐of‐plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out‐of‐plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to
ρeρi than the ρe or de scalings seen in 2‐D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region.
Key Points
Three‐dimensional particle‐in‐cell simulations of an MMS electron diffusion region encounter at the magnetopause were performed
Characteristics of the turbulence are identified and are consistent with an electromagnetic branch of the lower hybrid drift instability
The characteristic scales of the density and current are controlled by turbulence and are a hybrid of the electron and ion Larmor radii |
---|---|
ISSN: | 2169-9380 2169-9402 |
DOI: | 10.1002/2017JA024227 |