Internal wave resonant triads in finite-depth non-uniform stratifications

We present a theoretical study of nonlinear effects that result from modal interactions in internal waves in a non-uniformly stratified finite-depth fluid with background rotation. A linear wave field containing modes $m$ and $n$ (of horizontal wavenumbers $k_{m}$ and $k_{n}$ ) at a fixed frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-08, Vol.824, p.286-311
Hauptverfasser: Varma, Dheeraj, Mathur, Manikandan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a theoretical study of nonlinear effects that result from modal interactions in internal waves in a non-uniformly stratified finite-depth fluid with background rotation. A linear wave field containing modes $m$ and $n$ (of horizontal wavenumbers $k_{m}$ and $k_{n}$ ) at a fixed frequency $\unicode[STIX]{x1D714}$ results in two different terms in the steady-state weakly nonlinear solution: (i) a superharmonic wave of frequency $2\unicode[STIX]{x1D714}$ , horizontal wavenumber $k_{m}+k_{n}$ and a vertical structure $\bar{h}_{mn}(z)$ and (ii) a time-independent term (Eulerian mean flow) with horizontal wavenumber $k_{m}-k_{n}$ . For some $(m,n)$ , $\bar{h}_{mn}(z)$ is infinitely large along specific curves on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane, where $N_{0}$ and $f$ are the deep ocean stratification and the Coriolis frequency, respectively; these curves are referred to as divergence curves in the rest of this paper. In uniform stratifications, a unique divergence curve occurs on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane for those $(m,n\neq m)$ that satisfy $(m/3)
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2017.343