Internal wave resonant triads in finite-depth non-uniform stratifications
We present a theoretical study of nonlinear effects that result from modal interactions in internal waves in a non-uniformly stratified finite-depth fluid with background rotation. A linear wave field containing modes $m$ and $n$ (of horizontal wavenumbers $k_{m}$ and $k_{n}$ ) at a fixed frequency...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2017-08, Vol.824, p.286-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a theoretical study of nonlinear effects that result from modal interactions in internal waves in a non-uniformly stratified finite-depth fluid with background rotation. A linear wave field containing modes
$m$
and
$n$
(of horizontal wavenumbers
$k_{m}$
and
$k_{n}$
) at a fixed frequency
$\unicode[STIX]{x1D714}$
results in two different terms in the steady-state weakly nonlinear solution: (i) a superharmonic wave of frequency
$2\unicode[STIX]{x1D714}$
, horizontal wavenumber
$k_{m}+k_{n}$
and a vertical structure
$\bar{h}_{mn}(z)$
and (ii) a time-independent term (Eulerian mean flow) with horizontal wavenumber
$k_{m}-k_{n}$
. For some
$(m,n)$
,
$\bar{h}_{mn}(z)$
is infinitely large along specific curves on the
$(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$
plane, where
$N_{0}$
and
$f$
are the deep ocean stratification and the Coriolis frequency, respectively; these curves are referred to as divergence curves in the rest of this paper. In uniform stratifications, a unique divergence curve occurs on the
$(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$
plane for those
$(m,n\neq m)$
that satisfy
$(m/3) |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2017.343 |