Robust statistics for outlier detection
When analyzing data, outlying observations cause problems because they may strongly influence the result. Robust statistics aims at detecting the outliers by searching for the model fitted by the majority of the data. We present an overview of several robust methods and outlier detection tools. We d...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2011-01, Vol.1 (1), p.73-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When analyzing data, outlying observations cause problems because they may strongly influence the result. Robust statistics aims at detecting the outliers by searching for the model fitted by the majority of the data. We present an overview of several robust methods and outlier detection tools. We discuss robust procedures for univariate, low‐dimensional, and high‐dimensional data such as estimation of location and scatter, linear regression, principal component analysis, and classification. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 73‐79 DOI: 10.1002/widm.2
This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Spatial and Temporal Data Mining
Application Areas > Health Care
Technologies > Structure Discovery and Clustering |
---|---|
ISSN: | 1942-4787 1942-4795 |
DOI: | 10.1002/widm.2 |