Wall contact effects of particle-wall collision process in a two-phase particle fluid
Particle-wall collision is a complex liquid-solid coupling matter approximating to a chaotic state. Previous research mainly focused on the issues of particle trajectory and near-wall flow field, but the particle-wall collision mechanism and contact effects are unclear. To address this, a coupled co...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2017-12, Vol.18 (12), p.958-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle-wall collision is a complex liquid-solid coupling matter approximating to a chaotic state. Previous research mainly focused on the issues of particle trajectory and near-wall flow field, but the particle-wall collision mechanism and contact effects are unclear. To address this, a coupled computational fluid dynamics and discrete element method (CFD-DEM) modeling method is proposed. Firstly, flow field profiles are acquired by the CFD method as the initial motion conditions. Then, the particles are regarded as rigid bodies, and the data interactions between CFD and DEM are implemented by calculating for interaction force and void fraction. The results show that there are radial texture phenomena on the particle trajectories caused by the flowing interference; the central region has the lowest velocity and can be regarded as the rigid core of a Rankine vortex; if inlet diameter is 20 mm, the contacting distribution with rotating superposition can reach the best uniformity; the higher viscosity can carry more particles, and the transporting ability of the fluid medium is improved; the uniform contact effects can be more easily performed by the low viscosity fluid. This research can offer theoretical relevance to the modeling for multi-phase particle fluid, and provide technical support for flow regulation in the areas of fluid-based processing, turbine blade erosion, and reactor wall abrasion. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A1700039 |