Online auto-calibration of triaxial accelerometer with time-variant model structures

In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2017-10, Vol.266, p.294-307
Hauptverfasser: Ye, L., Argha, A., Celler, B.G., Nguyen, H.T., Su, S.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 294
container_title Sensors and actuators. A. Physical.
container_volume 266
creator Ye, L.
Argha, A.
Celler, B.G.
Nguyen, H.T.
Su, S.W.
description In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as its associated cost function is linearized by a new proposed linearization approach. Then, exploiting an online sparse recursive least square (SPARLS) estimation, the unknown parameters are identified. In particular, the online sparse recursive method is based on an L1-norm penalized expectation-maximum (EM) algorithm, which can amend the model automatically by penalizing the insignificant parameters to zero. Furthermore, this method can reduce computational complexity and be implemented in a low-cost Micro-Controller-Unit (MCU). Based on the numerical analysis, it can be concluded that the proposed recursive algorithm can calculate the unknown parameters reliably and accurately for most MEMS triaxial accelerometers available in the market. Additionally, this method is experimentally validated by comparing the output estimations before and after calibration under various scenarios, which further confirms its feasibility and effectiveness for online TA calibration.
doi_str_mv 10.1016/j.sna.2017.08.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1977219043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424717308634</els_id><sourcerecordid>1977219043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-11de62fe6941c4a6842890af161d0172562f76374e3db698368d2cf181ef17383</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMSf4YmM7YkIVX1KlLmW2XOciHCVxsZ0C_x6jMjPdcM97Hw8h10AroCBu-ypOpqopyIqqivLmhCxASVYyKppTsqBNzUtec3lOLmLsKaWMSbkg2800uAkLMydfWjO4XTDJ-anwXZGCM1_ODIWxFgcMfsSEofh06b1IbsTyYDIxpWL0LQ5FTGG2aQ4YL8lZZ4aIV391Sd6eHrerl3K9eX5dPaxLy6lMJUCLou5QNBwsN0LxWjXUdCCgzY_Ud7kpBZMcWbsTjWJCtbXtQAF2IJliS3JznLsP_mPGmHTv5zDllRoaKWtoKGeZgiNlg48xYKf3wY0mfGug-lee7nWWp3_laap0lpcz98cM5vMPDoOO1uFksXUBbdKtd_-kfwC9sndr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977219043</pqid></control><display><type>article</type><title>Online auto-calibration of triaxial accelerometer with time-variant model structures</title><source>Elsevier ScienceDirect Journals</source><creator>Ye, L. ; Argha, A. ; Celler, B.G. ; Nguyen, H.T. ; Su, S.W.</creator><creatorcontrib>Ye, L. ; Argha, A. ; Celler, B.G. ; Nguyen, H.T. ; Su, S.W.</creatorcontrib><description>In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as its associated cost function is linearized by a new proposed linearization approach. Then, exploiting an online sparse recursive least square (SPARLS) estimation, the unknown parameters are identified. In particular, the online sparse recursive method is based on an L1-norm penalized expectation-maximum (EM) algorithm, which can amend the model automatically by penalizing the insignificant parameters to zero. Furthermore, this method can reduce computational complexity and be implemented in a low-cost Micro-Controller-Unit (MCU). Based on the numerical analysis, it can be concluded that the proposed recursive algorithm can calculate the unknown parameters reliably and accurately for most MEMS triaxial accelerometers available in the market. Additionally, this method is experimentally validated by comparing the output estimations before and after calibration under various scenarios, which further confirms its feasibility and effectiveness for online TA calibration.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2017.08.049</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>10th century ; Accelerometers ; Calibration ; Cost analysis ; Expectation maximization algorithm ; Linearization ; Mathematical models ; Microelectromechanical systems ; Model linearization ; Numerical analysis ; Online calibration ; Parameter estimation ; Parameter identification ; Recursive methods ; Tri-axial accelerometer</subject><ispartof>Sensors and actuators. A. Physical., 2017-10, Vol.266, p.294-307</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-11de62fe6941c4a6842890af161d0172562f76374e3db698368d2cf181ef17383</citedby><cites>FETCH-LOGICAL-c407t-11de62fe6941c4a6842890af161d0172562f76374e3db698368d2cf181ef17383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424717308634$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ye, L.</creatorcontrib><creatorcontrib>Argha, A.</creatorcontrib><creatorcontrib>Celler, B.G.</creatorcontrib><creatorcontrib>Nguyen, H.T.</creatorcontrib><creatorcontrib>Su, S.W.</creatorcontrib><title>Online auto-calibration of triaxial accelerometer with time-variant model structures</title><title>Sensors and actuators. A. Physical.</title><description>In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as its associated cost function is linearized by a new proposed linearization approach. Then, exploiting an online sparse recursive least square (SPARLS) estimation, the unknown parameters are identified. In particular, the online sparse recursive method is based on an L1-norm penalized expectation-maximum (EM) algorithm, which can amend the model automatically by penalizing the insignificant parameters to zero. Furthermore, this method can reduce computational complexity and be implemented in a low-cost Micro-Controller-Unit (MCU). Based on the numerical analysis, it can be concluded that the proposed recursive algorithm can calculate the unknown parameters reliably and accurately for most MEMS triaxial accelerometers available in the market. Additionally, this method is experimentally validated by comparing the output estimations before and after calibration under various scenarios, which further confirms its feasibility and effectiveness for online TA calibration.</description><subject>10th century</subject><subject>Accelerometers</subject><subject>Calibration</subject><subject>Cost analysis</subject><subject>Expectation maximization algorithm</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Microelectromechanical systems</subject><subject>Model linearization</subject><subject>Numerical analysis</subject><subject>Online calibration</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Recursive methods</subject><subject>Tri-axial accelerometer</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giMSf4YmM7YkIVX1KlLmW2XOciHCVxsZ0C_x6jMjPdcM97Hw8h10AroCBu-ypOpqopyIqqivLmhCxASVYyKppTsqBNzUtec3lOLmLsKaWMSbkg2800uAkLMydfWjO4XTDJ-anwXZGCM1_ODIWxFgcMfsSEofh06b1IbsTyYDIxpWL0LQ5FTGG2aQ4YL8lZZ4aIV391Sd6eHrerl3K9eX5dPaxLy6lMJUCLou5QNBwsN0LxWjXUdCCgzY_Ud7kpBZMcWbsTjWJCtbXtQAF2IJliS3JznLsP_mPGmHTv5zDllRoaKWtoKGeZgiNlg48xYKf3wY0mfGug-lee7nWWp3_laap0lpcz98cM5vMPDoOO1uFksXUBbdKtd_-kfwC9sndr</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Ye, L.</creator><creator>Argha, A.</creator><creator>Celler, B.G.</creator><creator>Nguyen, H.T.</creator><creator>Su, S.W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20171015</creationdate><title>Online auto-calibration of triaxial accelerometer with time-variant model structures</title><author>Ye, L. ; Argha, A. ; Celler, B.G. ; Nguyen, H.T. ; Su, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-11de62fe6941c4a6842890af161d0172562f76374e3db698368d2cf181ef17383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>10th century</topic><topic>Accelerometers</topic><topic>Calibration</topic><topic>Cost analysis</topic><topic>Expectation maximization algorithm</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Microelectromechanical systems</topic><topic>Model linearization</topic><topic>Numerical analysis</topic><topic>Online calibration</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Recursive methods</topic><topic>Tri-axial accelerometer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, L.</creatorcontrib><creatorcontrib>Argha, A.</creatorcontrib><creatorcontrib>Celler, B.G.</creatorcontrib><creatorcontrib>Nguyen, H.T.</creatorcontrib><creatorcontrib>Su, S.W.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, L.</au><au>Argha, A.</au><au>Celler, B.G.</au><au>Nguyen, H.T.</au><au>Su, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online auto-calibration of triaxial accelerometer with time-variant model structures</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>266</volume><spage>294</spage><epage>307</epage><pages>294-307</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as its associated cost function is linearized by a new proposed linearization approach. Then, exploiting an online sparse recursive least square (SPARLS) estimation, the unknown parameters are identified. In particular, the online sparse recursive method is based on an L1-norm penalized expectation-maximum (EM) algorithm, which can amend the model automatically by penalizing the insignificant parameters to zero. Furthermore, this method can reduce computational complexity and be implemented in a low-cost Micro-Controller-Unit (MCU). Based on the numerical analysis, it can be concluded that the proposed recursive algorithm can calculate the unknown parameters reliably and accurately for most MEMS triaxial accelerometers available in the market. Additionally, this method is experimentally validated by comparing the output estimations before and after calibration under various scenarios, which further confirms its feasibility and effectiveness for online TA calibration.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2017.08.049</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2017-10, Vol.266, p.294-307
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_1977219043
source Elsevier ScienceDirect Journals
subjects 10th century
Accelerometers
Calibration
Cost analysis
Expectation maximization algorithm
Linearization
Mathematical models
Microelectromechanical systems
Model linearization
Numerical analysis
Online calibration
Parameter estimation
Parameter identification
Recursive methods
Tri-axial accelerometer
title Online auto-calibration of triaxial accelerometer with time-variant model structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20auto-calibration%20of%20triaxial%20accelerometer%20with%20time-variant%20model%20structures&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Ye,%20L.&rft.date=2017-10-15&rft.volume=266&rft.spage=294&rft.epage=307&rft.pages=294-307&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2017.08.049&rft_dat=%3Cproquest_cross%3E1977219043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977219043&rft_id=info:pmid/&rft_els_id=S0924424717308634&rfr_iscdi=true