Online auto-calibration of triaxial accelerometer with time-variant model structures

In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2017-10, Vol.266, p.294-307
Hauptverfasser: Ye, L., Argha, A., Celler, B.G., Nguyen, H.T., Su, S.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an online auto-calibration method for MicroElectroMechanical Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simultaneously identify the time-dependent model structure and its parameters during the changes of the operating environment. Firstly, the model as well as its associated cost function is linearized by a new proposed linearization approach. Then, exploiting an online sparse recursive least square (SPARLS) estimation, the unknown parameters are identified. In particular, the online sparse recursive method is based on an L1-norm penalized expectation-maximum (EM) algorithm, which can amend the model automatically by penalizing the insignificant parameters to zero. Furthermore, this method can reduce computational complexity and be implemented in a low-cost Micro-Controller-Unit (MCU). Based on the numerical analysis, it can be concluded that the proposed recursive algorithm can calculate the unknown parameters reliably and accurately for most MEMS triaxial accelerometers available in the market. Additionally, this method is experimentally validated by comparing the output estimations before and after calibration under various scenarios, which further confirms its feasibility and effectiveness for online TA calibration.
ISSN:0924-4247
1873-3069
DOI:10.1016/j.sna.2017.08.049