Simulation-based shop floor control
This paper presents an overview of simulation-based shop floor control. Much of the work described is based on research conducted in the Computer Integrated Manufacturing (CIM) Lab at The Pennsylvania State University, the Texas A&M Computer Aided Manufacturing Lab (TAMCAM), Technion in Israel,...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing systems 2002-01, Vol.21 (5), p.380-394 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an overview of simulation-based shop floor control. Much of the work described is based on research conducted in the Computer Integrated Manufacturing (CIM) Lab at The Pennsylvania State University, the Texas A&M Computer Aided Manufacturing Lab (TAMCAM), Technion in Israel, and the University of Arizona CIM lab over the past decade. In this approach, a discrete event simulation is used not only as a traditional analysis and evaluation tool but also as a task generator that drives shop floor operations in real time. To enable this, a special feature of the Arena™ simulation language was used whereby the simulation model interacts directly with a shop floor execution system by sending and receiving messages. This control simulation reads process plans and master production orders from external databases that are updated by a process planning system and coordinated via an external business system. The control simulation also interacts with other external programs such as a planner, a scheduler, and an error detection and recovery function. In this paper, the architecture, implementation, and the integration of all the components of the proposed simulation-based control system are described in detail. Finally, extensions to this approach, including automatic model generation, are described. |
---|---|
ISSN: | 0278-6125 1878-6642 |
DOI: | 10.1016/S0278-6125(02)80036-X |