Pedestrian Movement Direction Recognition Using Convolutional Neural Networks

Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-12, Vol.18 (12), p.3540-3548
Hauptverfasser: Dominguez-Sanchez, Alex, Cazorla, Miguel, Orts-Escolano, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3548
container_issue 12
container_start_page 3540
container_title IEEE transactions on intelligent transportation systems
container_volume 18
creator Dominguez-Sanchez, Alex
Cazorla, Miguel
Orts-Escolano, Sergio
description Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results.
doi_str_mv 10.1109/TITS.2017.2726140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1975053833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8006277</ieee_id><sourcerecordid>1975053833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-5885aaba6b7fedd10ab3158b923eb16514ab10a6774699741a1bbd1fc6258d043</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKc_QLwpeN2ZN2k-einza7Cp6HYdkjYdmVszk3biv7fdhlfv4XDOy-FB6BrwCADnd_PJ_HNEMIgREYRDhk_QABiTKcbAT3tNsjTHDJ-jixhXnZsxgAGavdvSxiY4XSczv7MbWzfJgwu2aJyvkw9b-GXt9noRXb1Mxr7e-XXbO3qdvNo27E_z48NXvERnlV5He3W8Q7R4epyPX9Lp2_NkfD9NC0p5kzIpmdZGcyMqW5aAtaHApMkJtQY4g0ybzuRCZDzPRQYajCmhKjhhssQZHaLbw99t8N9tt1-tfBu6QVFBLhhmVFLapeCQKoKPMdhKbYPb6PCrAKuemuqpqZ6aOlLrOjeHjrPW_uclxpwIQf8AfdBpEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975053833</pqid></control><display><type>article</type><title>Pedestrian Movement Direction Recognition Using Convolutional Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Dominguez-Sanchez, Alex ; Cazorla, Miguel ; Orts-Escolano, Sergio</creator><creatorcontrib>Dominguez-Sanchez, Alex ; Cazorla, Miguel ; Orts-Escolano, Sergio</creatorcontrib><description>Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2726140</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>advance driver assistance system ; Artificial neural networks ; Autonomous automobiles ; Autonomous cars ; Biological neural networks ; Convolutional neural networks ; Histograms ; Machine learning ; Neural networks ; Pedestrian detection ; pedestrian intention recognition ; Pedestrians ; Recognition ; Shopping centers ; Streets ; Surveillance systems ; Training ; Trajectory</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-12, Vol.18 (12), p.3540-3548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-5885aaba6b7fedd10ab3158b923eb16514ab10a6774699741a1bbd1fc6258d043</citedby><cites>FETCH-LOGICAL-c336t-5885aaba6b7fedd10ab3158b923eb16514ab10a6774699741a1bbd1fc6258d043</cites><orcidid>0000-0001-6817-6326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8006277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8006277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dominguez-Sanchez, Alex</creatorcontrib><creatorcontrib>Cazorla, Miguel</creatorcontrib><creatorcontrib>Orts-Escolano, Sergio</creatorcontrib><title>Pedestrian Movement Direction Recognition Using Convolutional Neural Networks</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results.</description><subject>advance driver assistance system</subject><subject>Artificial neural networks</subject><subject>Autonomous automobiles</subject><subject>Autonomous cars</subject><subject>Biological neural networks</subject><subject>Convolutional neural networks</subject><subject>Histograms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Pedestrian detection</subject><subject>pedestrian intention recognition</subject><subject>Pedestrians</subject><subject>Recognition</subject><subject>Shopping centers</subject><subject>Streets</subject><subject>Surveillance systems</subject><subject>Training</subject><subject>Trajectory</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOKc_QLwpeN2ZN2k-einza7Cp6HYdkjYdmVszk3biv7fdhlfv4XDOy-FB6BrwCADnd_PJ_HNEMIgREYRDhk_QABiTKcbAT3tNsjTHDJ-jixhXnZsxgAGavdvSxiY4XSczv7MbWzfJgwu2aJyvkw9b-GXt9noRXb1Mxr7e-XXbO3qdvNo27E_z48NXvERnlV5He3W8Q7R4epyPX9Lp2_NkfD9NC0p5kzIpmdZGcyMqW5aAtaHApMkJtQY4g0ybzuRCZDzPRQYajCmhKjhhssQZHaLbw99t8N9tt1-tfBu6QVFBLhhmVFLapeCQKoKPMdhKbYPb6PCrAKuemuqpqZ6aOlLrOjeHjrPW_uclxpwIQf8AfdBpEQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Dominguez-Sanchez, Alex</creator><creator>Cazorla, Miguel</creator><creator>Orts-Escolano, Sergio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6817-6326</orcidid></search><sort><creationdate>20171201</creationdate><title>Pedestrian Movement Direction Recognition Using Convolutional Neural Networks</title><author>Dominguez-Sanchez, Alex ; Cazorla, Miguel ; Orts-Escolano, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-5885aaba6b7fedd10ab3158b923eb16514ab10a6774699741a1bbd1fc6258d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>advance driver assistance system</topic><topic>Artificial neural networks</topic><topic>Autonomous automobiles</topic><topic>Autonomous cars</topic><topic>Biological neural networks</topic><topic>Convolutional neural networks</topic><topic>Histograms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Pedestrian detection</topic><topic>pedestrian intention recognition</topic><topic>Pedestrians</topic><topic>Recognition</topic><topic>Shopping centers</topic><topic>Streets</topic><topic>Surveillance systems</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dominguez-Sanchez, Alex</creatorcontrib><creatorcontrib>Cazorla, Miguel</creatorcontrib><creatorcontrib>Orts-Escolano, Sergio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dominguez-Sanchez, Alex</au><au>Cazorla, Miguel</au><au>Orts-Escolano, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedestrian Movement Direction Recognition Using Convolutional Neural Networks</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>18</volume><issue>12</issue><spage>3540</spage><epage>3548</epage><pages>3540-3548</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2017.2726140</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6817-6326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2017-12, Vol.18 (12), p.3540-3548
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1975053833
source IEEE Electronic Library (IEL)
subjects advance driver assistance system
Artificial neural networks
Autonomous automobiles
Autonomous cars
Biological neural networks
Convolutional neural networks
Histograms
Machine learning
Neural networks
Pedestrian detection
pedestrian intention recognition
Pedestrians
Recognition
Shopping centers
Streets
Surveillance systems
Training
Trajectory
title Pedestrian Movement Direction Recognition Using Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedestrian%20Movement%20Direction%20Recognition%20Using%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Dominguez-Sanchez,%20Alex&rft.date=2017-12-01&rft.volume=18&rft.issue=12&rft.spage=3540&rft.epage=3548&rft.pages=3540-3548&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2726140&rft_dat=%3Cproquest_RIE%3E1975053833%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975053833&rft_id=info:pmid/&rft_ieee_id=8006277&rfr_iscdi=true