Pedestrian Movement Direction Recognition Using Convolutional Neural Networks
Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2017-12, Vol.18 (12), p.3540-3548 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses on deep learning techniques such as convolutional neural networks (CNN) to achieve a reliable detection of pedestrians moving in a particular direction. We propose a CNN-based technique that leverages current pedestrian detection techniques (histograms of oriented gradients-linSVM) to generate a sum of subtracted frames (flow estimation around the detected pedestrian), which are used as an input for the proposed modified versions of various state-of-the-art CNN networks, such as AlexNet, GoogleNet, and ResNet. Moreover, we have also created a new data set for this purpose, and analyzed the importance of training in a known data set for the neural networks to achieve reliable results. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2017.2726140 |