Particle‐resolved PIV experiments of solid‐liquid mixing in a turbulent stirred tank

Particle Image Velocimetry (PIV) experiments on turbulent solid‐liquid stirred tank flow with careful refractive index matching of the two phases have been performed. The spatial resolution of the PIV data is finer than the size of the spherical, uniformly sized solid particles, thereby providing in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2018-01, Vol.64 (1), p.389-402
Hauptverfasser: Li, Genghong, Gao, Zhengming, Li, Zhipeng, Wang, Jiawei, Derksen, J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle Image Velocimetry (PIV) experiments on turbulent solid‐liquid stirred tank flow with careful refractive index matching of the two phases have been performed. The spatial resolution of the PIV data is finer than the size of the spherical, uniformly sized solid particles, thereby providing insight in the flow around individual particles. The impeller is a down‐pumping pitch‐blade turbine. The impeller‐based Reynolds number has been fixed to Re = 104. Overall solids volume fractions up to 8% have been investigated. The PIV experiments are impeller‐angle resolved, that is, conditioned on the angular position of the impeller. The two‐phase systems are in partially suspended states with an inhomogeneous distribution of solids: high solids loadings near the bottom and near the outer walls of the tank, much less solids in the bulk of the tank. The liquid velocity fields show very strong phase coupling effects with the particles increasingly attenuating the overall circulation patterns as well as the liquid velocity fluctuation levels when the solids volume fraction is increased. © 2017 American Institute of Chemical Engineers AIChE J, 63: 389–402, 2018
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.15924