Frequentist and Bayesian inference for Gaussian–log‐Gaussian wavelet trees and statistical signal processing applications

We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2017, Vol.6 (1), p.248-256
Hauptverfasser: Jacobsen, Robert Dahl, Møller, Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection problems in two‐dimensional images. Copyright © 2017 John Wiley & Sons, Ltd.
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.156