Three dimensional radial Tchebichef moment invariants for volumetric image recognition
The property of rotation, scaling and translation invariant has a great important in 3D image classification and recognition. Tchebichef moments as a classical orthogonal moment have been widely used in image analysis and recognition. Since Tchebichef moments are represented in Cartesian coordinate,...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2017-10, Vol.27 (4), p.810-824 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The property of rotation, scaling and translation invariant has a great important in 3D image classification and recognition. Tchebichef moments as a classical orthogonal moment have been widely used in image analysis and recognition. Since Tchebichef moments are represented in Cartesian coordinate, the rotation invariance can’t easy to realize. In this paper, we propose a new set of 3D rotation scaling and translation invariance of radial Tchebichef moments. We also present a theoretical mathematics to derive them. Hence, this paper we present a new 3D radial Tchebichef moments using a spherical representation of volumetric image by a one-dimensional orthogonal discrete Tchebichef polynomials and a spherical function. They have better image reconstruction performance, lower information redundancy and higher noise robustness than the existing radial orthogonal moments. At last, a mathematical framework for obtaining the rotation, scaling and translation invariants of these two types of Tchebichef moments is provided. Theoretical and experimental results show the superiority of the proposed methods in terms of image reconstruction capability and invariant recognition accuracy under both noisy and noise-free conditions. The result of experiments prove that the Tchebichef moments have done better than the Krawtchouk moments with and without noise. Simultaneously, the reconstructed 3D image converges quickly to the original image using 3D radial Tchebichef moments and the test images are clearly recognized from a set of images that are available in a PSB database. |
---|---|
ISSN: | 1054-6618 1555-6212 |
DOI: | 10.1134/S1054661817040113 |