Responses of soil respiration to clipping and grazing in a tallgrass prairie

Soil-surface CO2 flux (Fs) is an important component in prairie C budgets. Although grazing is common in grasslands, its effects on Fs have not been well documented. Three clipping treatments: (i) early-season clipping (EC); (ii) full-season clipping (FC); and (iii) no clipping (NC); which represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 1998-11, Vol.27 (6), p.1539-1548
Hauptverfasser: Bremer, D.J, Ham, J.M, Owensby, C.E, Knapp, A.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil-surface CO2 flux (Fs) is an important component in prairie C budgets. Although grazing is common in grasslands, its effects on Fs have not been well documented. Three clipping treatments: (i) early-season clipping (EC); (ii) full-season clipping (FC); and (iii) no clipping (NC); which represented two grazing strategies and a control, were applied to plots in a tallgrass prairie in northeastern Kansas, USA. Measurements of Fs were made with a portable gas-exchange system at weekly to monthly intervals for 1 yr. Concurrent measurements of soil temperature and volumetric soil water content at 0.1 m were obtained with dual-probe heat-capacity sensors. Measurements of Fs also were obtained in grazed pastures. Fs ranged annually from 8.8 X 10(-3) mg m(-2) s(-1) during the winter to 0.51 mg m(-2) s(-1) during the summer, following the patterns of soil temperature and canopy growth and phenology. Clipping typically reduced Fs 21 to 49% by the second day after clipping despite higher soil temperatures in clipped plots. Cumulative annual Fs were 4.94, 4.04, and 4.11 kg m(-2) yr(-1) in NC, EC, and FC treatments, respectively; thus, clipping reduced annual Fs by 17.5%. Differences in Fs between EC and FC were minimal, suggesting that different grazing strategies had little additional impact on annual Fs. Daily Fs in grazed pastures was 20 to 37% less than Fs in ungrazed pastures. Results suggest that grazing moderates Fs during the growing season by reducing canopy photosynthesis and slowing translocation of carbon to the rhizosphere.
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq1998.00472425002700060034x