A generalized action-angle representation of wave interaction in stratified shear flows

In this paper we express the linearized dynamics of interacting interfacial waves in stratified shear flows in the compact form of action-angle Hamilton’s equations. The pseudo-energy serves as the Hamiltonian of the system, the action coordinates are the contribution of the interfacial waves to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2018-01, Vol.834, p.220-236
Hauptverfasser: Heifetz, Eyal, Guha, Anirban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we express the linearized dynamics of interacting interfacial waves in stratified shear flows in the compact form of action-angle Hamilton’s equations. The pseudo-energy serves as the Hamiltonian of the system, the action coordinates are the contribution of the interfacial waves to the wave action and the angles are the phases of the interfacial waves. The term ‘generalized action angle’ aims to emphasize that the action of each wave is generally time dependent and this allows for instability. An attempt is made to relate this formalism to the action at a distance resonance instability mechanism between counter-propagating vorticity waves via the global conservations of pseudo-energy and pseudo-momentum.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2017.719