Reduction of dielectric constant by nanovoids formed through chemical treatment on silica crosslinked polyimide and its effect on properties
ABSTRACT In this study, 2,7‐diamino‐9‐fluorenol (DAF) has been introduced to bond silica to the main chain of the polyimide (PI) copolymer. DAF contains a hydroxyl group that could covalently bond with silica particles. 4,4′‐(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4′‐oxydianiline...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2018-03, Vol.135 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
In this study, 2,7‐diamino‐9‐fluorenol (DAF) has been introduced to bond silica to the main chain of the polyimide (PI) copolymer. DAF contains a hydroxyl group that could covalently bond with silica particles. 4,4′‐(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4′‐oxydianiline (4,4′‐ODA) have been used as monomers to form a copolymer with DAF. The variation of silica content was controlled as 5%, 7.5, 10, 12.5 wt %. Variation in silica content contributes to the formation of various size (100–410 nm) of macroporous voids after hydrofluoric acid (HF) treatment. HF etching process was introduced to dissolve the silica and form voids in the structure of PI copolymer films. Compared with conventional PI films, air voids that were formed in the PI copolymer film reduced the dielectric from 4.40 to 1.86. The reduction in the dielectric constants can be explained in terms of creating silica particles that increase the presence of air voids after HF treatment. The thermal stability was stable up to 500 °C and the modulus change was confirmed with a dynamic mechanical analysis (DMA) to evaluate the effect of silica on thermal and mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45982. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.45982 |