A specific amino acid residue in the catalytic site of dandelion polyphenol oxidases acts as ‘selector’ for substrate specificity

Key message Successful site-directed mutagenesis combined with in silico modeling and docking studies for the first time offers experimental proof of the role of the ‘substrate selector’ residue in plant polyphenol oxidases. The plant and fungi enzymes responsible for tissue browning are called poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2018-01, Vol.96 (1-2), p.151-164
Hauptverfasser: Prexler, Sarah M., Singh, Ratna, Moerschbacher, Bruno M., Dirks-Hofmeister, Mareike E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Key message Successful site-directed mutagenesis combined with in silico modeling and docking studies for the first time offers experimental proof of the role of the ‘substrate selector’ residue in plant polyphenol oxidases. The plant and fungi enzymes responsible for tissue browning are called polyphenol oxidases (PPOs). In plants, PPOs often occur as families of isoenzymes which are differentially expressed, but little is known about their physiological roles or natural substrates. In a recent study that explored these structure–function relationships, the eleven known dandelion ( Taraxacum officinale ) PPOs were shown to separate into two different phylogenetic groups differing in catalytic cavity architecture, kinetic parameters, and substrate range. The same study proposed that the PPOs’ substrate specificity is controlled by one specific amino acid residue positioned at the entrance to the catalytic site: whereas group 1 dandelion PPOs possess a hydrophobic isoleucine (I) at position H B2 +1, group 2 PPOs exhibit a larger, positively charged arginine (R). However, this suggestion was only based on bioinformatic analyses, not experiments. To experimentally investigate this hypothesis, we converted group 1 To PPO-2 and group 2 To PPO-6 into PPO-2-I 244 R and PPO-6-R 254 I, respectively, and expressed them in E. coli . By performing detailed kinetic characterization and in silico docking studies, we found that replacing this single amino acid significantly changed the PPO’s substrate specificity. Our findings therefore proof the role of the ‘substrate selector’ in plant PPOs.
ISSN:0167-4412
1573-5028
DOI:10.1007/s11103-017-0686-5