Optimizing Hadoop Performance for Big Data Analytics in Smart Grid

The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-11
Hauptverfasser: Ashton, Phillip M., Taylor, Gareth A., Li, Maozhen, Huang, Zhengwen, Khan, Mukhtaj, Khan, Mushtaq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2017
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2017
creator Ashton, Phillip M.
Taylor, Gareth A.
Li, Maozhen
Huang, Zhengwen
Khan, Mukhtaj
Khan, Mushtaq
description The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.
doi_str_mv 10.1155/2017/2198262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1973512795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1973512795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-841b7efb52add73e03bc30056638e2d85e500e085b2491544d781ae09fcebcc23</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pzbMEPGpdXtI06XGbOoXBBBW8hTRNZ8bW1qRD5l9vRgcePb3v8OPx8SF0CeQOgPMRJSBGFHJJM3qEBsAzlnBIxXHMhKYJUPZxis5CWBFCgYMcoMmi7dzG_bh6iZ902TQtfrG-avxG18biGPDELfG97jQe13q965wJ2NX4daN9h2felefopNLrYC8Od4jeHx_epk_JfDF7no7niWEZ6RKZQiFsVXCqy1IwS1hhGCE8y5i0tJTcckIskbygaQ48TUshQVuSV8YWxlA2RNf939Y3X1sbOrVqtj52CgpywThQkfOobntlfBOCt5VqvYtddwqI2q-k9iupw0qR3_T809Wl_nb_6ate22hspf80yFzklP0C0a1u9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973512795</pqid></control><display><type>article</type><title>Optimizing Hadoop Performance for Big Data Analytics in Smart Grid</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Ashton, Phillip M. ; Taylor, Gareth A. ; Li, Maozhen ; Huang, Zhengwen ; Khan, Mukhtaj ; Khan, Mushtaq</creator><contributor>Liatsis, Panos</contributor><creatorcontrib>Ashton, Phillip M. ; Taylor, Gareth A. ; Li, Maozhen ; Huang, Zhengwen ; Khan, Mukhtaj ; Khan, Mushtaq ; Liatsis, Panos</creatorcontrib><description>The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/2198262</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Analytics ; Big Data ; Computation ; Computer science ; Configurations ; Data analysis ; Data management ; Datasets ; Electricity distribution ; Employment ; Fault tolerance ; Gene expression ; Smart grid ; Variations</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-11</ispartof><rights>Copyright © 2017 Mukhtaj Khan et al.</rights><rights>Copyright © 2017 Mukhtaj Khan et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-841b7efb52add73e03bc30056638e2d85e500e085b2491544d781ae09fcebcc23</citedby><cites>FETCH-LOGICAL-c360t-841b7efb52add73e03bc30056638e2d85e500e085b2491544d781ae09fcebcc23</cites><orcidid>0000-0002-4933-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Liatsis, Panos</contributor><creatorcontrib>Ashton, Phillip M.</creatorcontrib><creatorcontrib>Taylor, Gareth A.</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Huang, Zhengwen</creatorcontrib><creatorcontrib>Khan, Mukhtaj</creatorcontrib><creatorcontrib>Khan, Mushtaq</creatorcontrib><title>Optimizing Hadoop Performance for Big Data Analytics in Smart Grid</title><title>Mathematical problems in engineering</title><description>The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.</description><subject>Algorithms</subject><subject>Analytics</subject><subject>Big Data</subject><subject>Computation</subject><subject>Computer science</subject><subject>Configurations</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Datasets</subject><subject>Electricity distribution</subject><subject>Employment</subject><subject>Fault tolerance</subject><subject>Gene expression</subject><subject>Smart grid</subject><subject>Variations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pzbMEPGpdXtI06XGbOoXBBBW8hTRNZ8bW1qRD5l9vRgcePb3v8OPx8SF0CeQOgPMRJSBGFHJJM3qEBsAzlnBIxXHMhKYJUPZxis5CWBFCgYMcoMmi7dzG_bh6iZ902TQtfrG-avxG18biGPDELfG97jQe13q965wJ2NX4daN9h2felefopNLrYC8Od4jeHx_epk_JfDF7no7niWEZ6RKZQiFsVXCqy1IwS1hhGCE8y5i0tJTcckIskbygaQ48TUshQVuSV8YWxlA2RNf939Y3X1sbOrVqtj52CgpywThQkfOobntlfBOCt5VqvYtddwqI2q-k9iupw0qR3_T809Wl_nb_6ate22hspf80yFzklP0C0a1u9w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ashton, Phillip M.</creator><creator>Taylor, Gareth A.</creator><creator>Li, Maozhen</creator><creator>Huang, Zhengwen</creator><creator>Khan, Mukhtaj</creator><creator>Khan, Mushtaq</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4933-6192</orcidid></search><sort><creationdate>20170101</creationdate><title>Optimizing Hadoop Performance for Big Data Analytics in Smart Grid</title><author>Ashton, Phillip M. ; Taylor, Gareth A. ; Li, Maozhen ; Huang, Zhengwen ; Khan, Mukhtaj ; Khan, Mushtaq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-841b7efb52add73e03bc30056638e2d85e500e085b2491544d781ae09fcebcc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analytics</topic><topic>Big Data</topic><topic>Computation</topic><topic>Computer science</topic><topic>Configurations</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Datasets</topic><topic>Electricity distribution</topic><topic>Employment</topic><topic>Fault tolerance</topic><topic>Gene expression</topic><topic>Smart grid</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashton, Phillip M.</creatorcontrib><creatorcontrib>Taylor, Gareth A.</creatorcontrib><creatorcontrib>Li, Maozhen</creatorcontrib><creatorcontrib>Huang, Zhengwen</creatorcontrib><creatorcontrib>Khan, Mukhtaj</creatorcontrib><creatorcontrib>Khan, Mushtaq</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashton, Phillip M.</au><au>Taylor, Gareth A.</au><au>Li, Maozhen</au><au>Huang, Zhengwen</au><au>Khan, Mukhtaj</au><au>Khan, Mushtaq</au><au>Liatsis, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Hadoop Performance for Big Data Analytics in Smart Grid</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/2198262</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4933-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_1973512795
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Algorithms
Analytics
Big Data
Computation
Computer science
Configurations
Data analysis
Data management
Datasets
Electricity distribution
Employment
Fault tolerance
Gene expression
Smart grid
Variations
title Optimizing Hadoop Performance for Big Data Analytics in Smart Grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Hadoop%20Performance%20for%20Big%20Data%20Analytics%20in%20Smart%20Grid&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ashton,%20Phillip%20M.&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/2198262&rft_dat=%3Cproquest_cross%3E1973512795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973512795&rft_id=info:pmid/&rfr_iscdi=true