Optimizing Hadoop Performance for Big Data Analytics in Smart Grid

The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-11
Hauptverfasser: Ashton, Phillip M., Taylor, Gareth A., Li, Maozhen, Huang, Zhengwen, Khan, Mukhtaj, Khan, Mushtaq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact on the performance of the Hadoop framework. This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA) algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes the default Hadoop configuration settings.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/2198262