Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States

The effect of tack coat application on pavement interlayer shear strength attracts strong interest during asphalt paving. Given its extensive use, tack coat is known to behave as a bond material to reduce pavement distresses such as slippage crack. The effectiveness of tack coat in increasing shear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Pavement Research and Technology 2017-09, Vol.10 (5), p.434-445
1. Verfasser: Zhang, Weiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of tack coat application on pavement interlayer shear strength attracts strong interest during asphalt paving. Given its extensive use, tack coat is known to behave as a bond material to reduce pavement distresses such as slippage crack. The effectiveness of tack coat in increasing shear strength may be affected by multiple factors, such as tack coat material, test condition, pavement surface condition, and moisture. This article is a literature review focus on how the interlayer shear strength varied when relevant influential factors are changing. Review results indicate that the interlayer shear strength increased with the decreased test temperature, increased traffic load (within design limit), and increased test confinement pressure. Additionally, the milled pavement surface always has higher shear strength then the non-milled pavement surface. It is also found that laboratory-prepared specimens resulted in higher interlayer shear strength than field pavement cores. The effect of other factors on tack coat application may follow different trends depending on mix type and existing pavement condition. For instance, optimum tack coat rate that corresponds to peak shear strength is widely reported, while it is also found that tack coat does not greatly affect shear strength on dry, clean and milled pavement surface. Furthermore, shear strength reduced when mixture is designed with high percentage of air voids or coarse aggregate structure, such as porous asphalt and stone mastic asphalt (SMA) mixtures. More findings and recommendations can be found in this paper.
ISSN:1996-6814
1997-1400
DOI:10.1016/j.ijprt.2017.07.003