Calabi-Yau manifolds with isolated conical singularities
Let X be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let L be an ample line bundle on X . Assume that the pair ( X , L ) is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point x ∈ X there exist...
Gespeichert in:
Veröffentlicht in: | Publications mathématiques. Institut des hautes études scientifiques 2017-11, Vol.126 (1), p.73-130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Publications mathématiques. Institut des hautes études scientifiques |
container_volume | 126 |
creator | Hein, Hans-Joachim Sun, Song |
description | Let
X
be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let
L
be an ample line bundle on
X
. Assume that the pair
(
X
,
L
)
is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point
x
∈
X
there exist a Kähler-Einstein Fano manifold
Z
and a positive integer
q
dividing
K
Z
such that
−
1
q
K
Z
is very ample and such that the germ
(
X
,
x
)
is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of
1
q
K
Z
. We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing
2
π
c
1
(
L
)
on
X
is asymptotic at a polynomial rate near
x
to the natural Ricci-flat Kähler cone metric on
1
q
K
Z
constructed using the Calabi ansatz. In particular, our result applies if
(
X
,
O
(
1
)
)
is a nodal quintic threefold in
P
4
. This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities. |
doi_str_mv | 10.1007/s10240-017-0092-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1972446158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1972446158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a0c8ccb0089eec2f39e49be51a639a742ad79e3bba4722b4b2165015088dc123</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2U5ij6gCilSJpQuTZTtOcZUmxU6E-HtchYGF6S3n3Kt3CblFuEeA-iEhMAEUsKYAilE8IwusUFJUyM_JIjOcSg54Sa5S2kMGq0ouiFyZzthA381UHEwf2qFrUvEVxo8ipKEzo28KN_TBma5Iod9NnYlhDD5dk4vWdMnf_N4l2T4_bVdrunl7eV09bqjjpRqpASedswBSee9Yy5UXyvoSTcWVqQUzTa08t9aImjErLMOqBCxBysYh40tyN8ce4_A5-TTq_TDFPjdqVDUTosJSZgpnysUhpehbfYzhYOK3RtCnffS8j85v69M-GrPDZidltt_5-Cf5X-kHh9BnLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972446158</pqid></control><display><type>article</type><title>Calabi-Yau manifolds with isolated conical singularities</title><source>SpringerLink_现刊</source><creator>Hein, Hans-Joachim ; Sun, Song</creator><creatorcontrib>Hein, Hans-Joachim ; Sun, Song</creatorcontrib><description>Let
X
be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let
L
be an ample line bundle on
X
. Assume that the pair
(
X
,
L
)
is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point
x
∈
X
there exist a Kähler-Einstein Fano manifold
Z
and a positive integer
q
dividing
K
Z
such that
−
1
q
K
Z
is very ample and such that the germ
(
X
,
x
)
is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of
1
q
K
Z
. We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing
2
π
c
1
(
L
)
on
X
is asymptotic at a polynomial rate near
x
to the natural Ricci-flat Kähler cone metric on
1
q
K
Z
constructed using the Calabi ansatz. In particular, our result applies if
(
X
,
O
(
1
)
)
is a nodal quintic threefold in
P
4
. This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.</description><identifier>ISSN: 0073-8301</identifier><identifier>EISSN: 1618-1913</identifier><identifier>DOI: 10.1007/s10240-017-0092-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Geometry ; Manifolds ; Mathematics ; Mathematics and Statistics ; Number Theory ; Singularity (mathematics)</subject><ispartof>Publications mathématiques. Institut des hautes études scientifiques, 2017-11, Vol.126 (1), p.73-130</ispartof><rights>IHES and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a0c8ccb0089eec2f39e49be51a639a742ad79e3bba4722b4b2165015088dc123</citedby><cites>FETCH-LOGICAL-c359t-a0c8ccb0089eec2f39e49be51a639a742ad79e3bba4722b4b2165015088dc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10240-017-0092-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10240-017-0092-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hein, Hans-Joachim</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><title>Calabi-Yau manifolds with isolated conical singularities</title><title>Publications mathématiques. Institut des hautes études scientifiques</title><addtitle>Publ.math.IHES</addtitle><description>Let
X
be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let
L
be an ample line bundle on
X
. Assume that the pair
(
X
,
L
)
is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point
x
∈
X
there exist a Kähler-Einstein Fano manifold
Z
and a positive integer
q
dividing
K
Z
such that
−
1
q
K
Z
is very ample and such that the germ
(
X
,
x
)
is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of
1
q
K
Z
. We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing
2
π
c
1
(
L
)
on
X
is asymptotic at a polynomial rate near
x
to the natural Ricci-flat Kähler cone metric on
1
q
K
Z
constructed using the Calabi ansatz. In particular, our result applies if
(
X
,
O
(
1
)
)
is a nodal quintic threefold in
P
4
. This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Singularity (mathematics)</subject><issn>0073-8301</issn><issn>1618-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWyRmA3v2U5ij6gCilSJpQuTZTtOcZUmxU6E-HtchYGF6S3n3Kt3CblFuEeA-iEhMAEUsKYAilE8IwusUFJUyM_JIjOcSg54Sa5S2kMGq0ouiFyZzthA381UHEwf2qFrUvEVxo8ipKEzo28KN_TBma5Iod9NnYlhDD5dk4vWdMnf_N4l2T4_bVdrunl7eV09bqjjpRqpASedswBSee9Yy5UXyvoSTcWVqQUzTa08t9aImjErLMOqBCxBysYh40tyN8ce4_A5-TTq_TDFPjdqVDUTosJSZgpnysUhpehbfYzhYOK3RtCnffS8j85v69M-GrPDZidltt_5-Cf5X-kHh9BnLg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Hein, Hans-Joachim</creator><creator>Sun, Song</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20171101</creationdate><title>Calabi-Yau manifolds with isolated conical singularities</title><author>Hein, Hans-Joachim ; Sun, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a0c8ccb0089eec2f39e49be51a639a742ad79e3bba4722b4b2165015088dc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hein, Hans-Joachim</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hein, Hans-Joachim</au><au>Sun, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calabi-Yau manifolds with isolated conical singularities</atitle><jtitle>Publications mathématiques. Institut des hautes études scientifiques</jtitle><stitle>Publ.math.IHES</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>126</volume><issue>1</issue><spage>73</spage><epage>130</epage><pages>73-130</pages><issn>0073-8301</issn><eissn>1618-1913</eissn><abstract>Let
X
be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let
L
be an ample line bundle on
X
. Assume that the pair
(
X
,
L
)
is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point
x
∈
X
there exist a Kähler-Einstein Fano manifold
Z
and a positive integer
q
dividing
K
Z
such that
−
1
q
K
Z
is very ample and such that the germ
(
X
,
x
)
is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of
1
q
K
Z
. We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing
2
π
c
1
(
L
)
on
X
is asymptotic at a polynomial rate near
x
to the natural Ricci-flat Kähler cone metric on
1
q
K
Z
constructed using the Calabi ansatz. In particular, our result applies if
(
X
,
O
(
1
)
)
is a nodal quintic threefold in
P
4
. This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10240-017-0092-1</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0073-8301 |
ispartof | Publications mathématiques. Institut des hautes études scientifiques, 2017-11, Vol.126 (1), p.73-130 |
issn | 0073-8301 1618-1913 |
language | eng |
recordid | cdi_proquest_journals_1972446158 |
source | SpringerLink_现刊 |
subjects | Algebra Analysis Geometry Manifolds Mathematics Mathematics and Statistics Number Theory Singularity (mathematics) |
title | Calabi-Yau manifolds with isolated conical singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calabi-Yau%20manifolds%20with%20isolated%20conical%20singularities&rft.jtitle=Publications%20math%C3%A9matiques.%20Institut%20des%20hautes%20%C3%A9tudes%20scientifiques&rft.au=Hein,%20Hans-Joachim&rft.date=2017-11-01&rft.volume=126&rft.issue=1&rft.spage=73&rft.epage=130&rft.pages=73-130&rft.issn=0073-8301&rft.eissn=1618-1913&rft_id=info:doi/10.1007/s10240-017-0092-1&rft_dat=%3Cproquest_cross%3E1972446158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972446158&rft_id=info:pmid/&rfr_iscdi=true |