Calabi-Yau manifolds with isolated conical singularities
Let X be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let L be an ample line bundle on X . Assume that the pair ( X , L ) is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point x ∈ X there exist...
Gespeichert in:
Veröffentlicht in: | Publications mathématiques. Institut des hautes études scientifiques 2017-11, Vol.126 (1), p.73-130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a complex projective variety with only canonical singularities and with trivial canonical bundle. Let
L
be an ample line bundle on
X
. Assume that the pair
(
X
,
L
)
is the flat limit of a family of smooth polarized Calabi-Yau manifolds. Assume that for each singular point
x
∈
X
there exist a Kähler-Einstein Fano manifold
Z
and a positive integer
q
dividing
K
Z
such that
−
1
q
K
Z
is very ample and such that the germ
(
X
,
x
)
is locally analytically isomorphic to a neighborhood of the vertex of the blow-down of the zero section of
1
q
K
Z
. We prove that up to biholomorphism, the unique weak Ricci-flat Kähler metric representing
2
π
c
1
(
L
)
on
X
is asymptotic at a polynomial rate near
x
to the natural Ricci-flat Kähler cone metric on
1
q
K
Z
constructed using the Calabi ansatz. In particular, our result applies if
(
X
,
O
(
1
)
)
is a nodal quintic threefold in
P
4
. This provides the first known examples of compact Ricci-flat manifolds with non-orbifold isolated conical singularities. |
---|---|
ISSN: | 0073-8301 1618-1913 |
DOI: | 10.1007/s10240-017-0092-1 |