Inference about the slope in linear regression: an empirical likelihood approach

We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2019-02, Vol.71 (1), p.181-211
Hauptverfasser: Müller, Ursula U., Peng, Hanxiang, Schick, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 181
container_title Annals of the Institute of Statistical Mathematics
container_volume 71
creator Müller, Ursula U.
Peng, Hanxiang
Schick, Anton
description We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also be used in the model with responses missing at random, for which we recommend a complete case analysis. This suffices thanks to results by Müller and Schick (Bernoulli 23:2693–2719, 2017 ), which demonstrate that efficiency is preserved. We provide confidence intervals and tests for the slope, based on the limiting Chi-square distribution of the empirical likelihood, and a uniform expansion for the empirical likelihood ratio. The article concludes with a small simulation study.
doi_str_mv 10.1007/s10463-017-0632-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970874317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970874317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8ed4aaabad361a6a4a8188b7acfcb4d1650d19bdaeba5438a3bc0e364688e3b33</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HcS4uG6q4SZVggNk6dk7alNQOdjr07UkVBhamI_3nv0gfY9cSbiVAdZck5KUSICsBpcrE4YTNZFFlYgFFdspmABkINSrn7CKlLQCoTGUz9v7qG4rkHXG0YT_wYUM8daEn3nretZ4w8kjrSCm1wd9z9Jx2fRtbh934_6Ku3YRQc-z7GNBtLtlZg12iq987Z59Pjx_LF7F6e35dPqyEU8ViEJrqHBEt1qqUWGKOWmptK3SNs3ktywJqubA1ksUiVxqVdUCqzEutSVml5uxm6h1nv_eUBrMN--jHSSMXFegqV7IaXXJyuRhSitSYPrY7jAcjwRzBmQmcGcGZIzhzGDPZlEmj168p_mn-N_QDKK9yTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970874317</pqid></control><display><type>article</type><title>Inference about the slope in linear regression: an empirical likelihood approach</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Müller, Ursula U. ; Peng, Hanxiang ; Schick, Anton</creator><creatorcontrib>Müller, Ursula U. ; Peng, Hanxiang ; Schick, Anton</creatorcontrib><description>We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also be used in the model with responses missing at random, for which we recommend a complete case analysis. This suffices thanks to results by Müller and Schick (Bernoulli 23:2693–2719, 2017 ), which demonstrate that efficiency is preserved. We provide confidence intervals and tests for the slope, based on the limiting Chi-square distribution of the empirical likelihood, and a uniform expansion for the empirical likelihood ratio. The article concludes with a small simulation study.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-017-0632-y</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Computer simulation ; Confidence intervals ; Economic models ; Economics ; Empirical analysis ; Estimating techniques ; Finance ; Generalized method of moments ; Influence functions ; Insurance ; Likelihood ratio ; Management ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Regression analysis ; Statistical analysis ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2019-02, Vol.71 (1), p.181-211</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2017</rights><rights>Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8ed4aaabad361a6a4a8188b7acfcb4d1650d19bdaeba5438a3bc0e364688e3b33</citedby><cites>FETCH-LOGICAL-c359t-8ed4aaabad361a6a4a8188b7acfcb4d1650d19bdaeba5438a3bc0e364688e3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-017-0632-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-017-0632-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Müller, Ursula U.</creatorcontrib><creatorcontrib>Peng, Hanxiang</creatorcontrib><creatorcontrib>Schick, Anton</creatorcontrib><title>Inference about the slope in linear regression: an empirical likelihood approach</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also be used in the model with responses missing at random, for which we recommend a complete case analysis. This suffices thanks to results by Müller and Schick (Bernoulli 23:2693–2719, 2017 ), which demonstrate that efficiency is preserved. We provide confidence intervals and tests for the slope, based on the limiting Chi-square distribution of the empirical likelihood, and a uniform expansion for the empirical likelihood ratio. The article concludes with a small simulation study.</description><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Economic models</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Estimating techniques</subject><subject>Finance</subject><subject>Generalized method of moments</subject><subject>Influence functions</subject><subject>Insurance</subject><subject>Likelihood ratio</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqXwAGyWmA3HcS4uG6q4SZVggNk6dk7alNQOdjr07UkVBhamI_3nv0gfY9cSbiVAdZck5KUSICsBpcrE4YTNZFFlYgFFdspmABkINSrn7CKlLQCoTGUz9v7qG4rkHXG0YT_wYUM8daEn3nretZ4w8kjrSCm1wd9z9Jx2fRtbh934_6Ku3YRQc-z7GNBtLtlZg12iq987Z59Pjx_LF7F6e35dPqyEU8ViEJrqHBEt1qqUWGKOWmptK3SNs3ktywJqubA1ksUiVxqVdUCqzEutSVml5uxm6h1nv_eUBrMN--jHSSMXFegqV7IaXXJyuRhSitSYPrY7jAcjwRzBmQmcGcGZIzhzGDPZlEmj168p_mn-N_QDKK9yTA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Müller, Ursula U.</creator><creator>Peng, Hanxiang</creator><creator>Schick, Anton</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190201</creationdate><title>Inference about the slope in linear regression: an empirical likelihood approach</title><author>Müller, Ursula U. ; Peng, Hanxiang ; Schick, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8ed4aaabad361a6a4a8188b7acfcb4d1650d19bdaeba5438a3bc0e364688e3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Economic models</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Estimating techniques</topic><topic>Finance</topic><topic>Generalized method of moments</topic><topic>Influence functions</topic><topic>Insurance</topic><topic>Likelihood ratio</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Ursula U.</creatorcontrib><creatorcontrib>Peng, Hanxiang</creatorcontrib><creatorcontrib>Schick, Anton</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Ursula U.</au><au>Peng, Hanxiang</au><au>Schick, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference about the slope in linear regression: an empirical likelihood approach</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>71</volume><issue>1</issue><spage>181</spage><epage>211</epage><pages>181-211</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also be used in the model with responses missing at random, for which we recommend a complete case analysis. This suffices thanks to results by Müller and Schick (Bernoulli 23:2693–2719, 2017 ), which demonstrate that efficiency is preserved. We provide confidence intervals and tests for the slope, based on the limiting Chi-square distribution of the empirical likelihood, and a uniform expansion for the empirical likelihood ratio. The article concludes with a small simulation study.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-017-0632-y</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2019-02, Vol.71 (1), p.181-211
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_journals_1970874317
source SpringerLink Journals; EZB-FREE-00999 freely available EZB journals
subjects Computer simulation
Confidence intervals
Economic models
Economics
Empirical analysis
Estimating techniques
Finance
Generalized method of moments
Influence functions
Insurance
Likelihood ratio
Management
Mathematical models
Mathematics
Mathematics and Statistics
Regression analysis
Statistical analysis
Statistics
Statistics for Business
title Inference about the slope in linear regression: an empirical likelihood approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20about%20the%20slope%20in%20linear%20regression:%20an%20empirical%20likelihood%20approach&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=M%C3%BCller,%20Ursula%20U.&rft.date=2019-02-01&rft.volume=71&rft.issue=1&rft.spage=181&rft.epage=211&rft.pages=181-211&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-017-0632-y&rft_dat=%3Cproquest_cross%3E1970874317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970874317&rft_id=info:pmid/&rfr_iscdi=true