Inference about the slope in linear regression: an empirical likelihood approach

We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2019-02, Vol.71 (1), p.181-211
Hauptverfasser: Müller, Ursula U., Peng, Hanxiang, Schick, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new, efficient maximum empirical likelihood estimator for the slope in linear regression with independent errors and covariates. The estimator does not require estimation of the influence function, in contrast to other approaches, and is easy to obtain numerically. Our approach can also be used in the model with responses missing at random, for which we recommend a complete case analysis. This suffices thanks to results by Müller and Schick (Bernoulli 23:2693–2719, 2017 ), which demonstrate that efficiency is preserved. We provide confidence intervals and tests for the slope, based on the limiting Chi-square distribution of the empirical likelihood, and a uniform expansion for the empirical likelihood ratio. The article concludes with a small simulation study.
ISSN:0020-3157
1572-9052
DOI:10.1007/s10463-017-0632-y