Schmidt Decomposable Products of Projections

We characterize operators T = P Q ( P ,  Q orthogonal projections in a Hilbert space H ) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases { ψ n } of R ( P ) and { ξ n } of R ( Q ) such that ⟨ ξ n , ψ m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2017-12, Vol.89 (4), p.557-580
Hauptverfasser: Andruchow, Esteban, Corach, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize operators T = P Q ( P ,  Q orthogonal projections in a Hilbert space H ) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases { ψ n } of R ( P ) and { ξ n } of R ( Q ) such that ⟨ ξ n , ψ m ⟩ = 0 if n ≠ m . Also it is shown that this is equivalent to A = P - Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T = P Q has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-017-2402-x