The Essential Spectrum of Toeplitz Operators on the Unit Ball

In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the correspo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2017-12, Vol.89 (4), p.519-556
1. Verfasser: Hagger, Raffael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 4
container_start_page 519
container_title Integral equations and operator theory
container_volume 89
creator Hagger, Raffael
description In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the corresponding Toeplitz operator T f is Fredholm if and only if f has no zeros on the boundary ∂ B n . As a consequence, the essential spectrum of T f is given by the boundary values of f . We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233, 2013 , Indiana Univ Math J 56(5):2185–2232, 2007 ) and limit operator techniques coming from similar problems on the sequence space ℓ p ( Z ) (Hagger et al. in J Math Anal Appl 437(1):255–291, 2016 ; Lindner and Seidel in J Funct Anal 267(3):901–917, 2014 ; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495, 1998 and references therein).
doi_str_mv 10.1007/s00020-017-2399-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970303235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970303235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ac73dfc836e8cbc017b9fbe33ebccb4732af882754822070f12baea1832a33a93</originalsourceid><addsrcrecordid>eNp1kE9PAyEQxYnRxFr9AN5IPKMDtAscPGhT_yRNenCbeCMsgm6zXVagB_300qwHL54mmfm9Ny8PoUsK1xRA3CQAYECACsK4UoQeoQmdlY1UUh2jCXAhScXg9RSdpbQtMBOsmqDb-sPhZUquz63p8MvgbI77HQ4e18ENXZu_8Xpw0eQQEw49zoXf9G3G96brztGJN11yF79zijYPy3rxRFbrx-fF3YpYTqtMjBX8zVvJKydtY0vIRvnGce4aa5uZ4Mx4KZmYzyRjIMBT1hhnqCwHzo3iU3Q1-g4xfO5dynob9rEvLzVVAjhwxueFoiNlY0gpOq-H2O5M_NIU9KElPbakSwB9aEnTomGjJhW2f3fxj_O_oh8j3Gkq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970303235</pqid></control><display><type>article</type><title>The Essential Spectrum of Toeplitz Operators on the Unit Ball</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hagger, Raffael</creator><creatorcontrib>Hagger, Raffael</creatorcontrib><description>In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the corresponding Toeplitz operator T f is Fredholm if and only if f has no zeros on the boundary ∂ B n . As a consequence, the essential spectrum of T f is given by the boundary values of f . We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233, 2013 , Indiana Univ Math J 56(5):2185–2232, 2007 ) and limit operator techniques coming from similar problems on the sequence space ℓ p ( Z ) (Hagger et al. in J Math Anal Appl 437(1):255–291, 2016 ; Lindner and Seidel in J Funct Anal 267(3):901–917, 2014 ; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495, 1998 and references therein).</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-017-2399-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Continuity (mathematics) ; Economic impact ; Integrals ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Integral equations and operator theory, 2017-12, Vol.89 (4), p.519-556</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ac73dfc836e8cbc017b9fbe33ebccb4732af882754822070f12baea1832a33a93</citedby><cites>FETCH-LOGICAL-c316t-ac73dfc836e8cbc017b9fbe33ebccb4732af882754822070f12baea1832a33a93</cites><orcidid>0000-0002-4289-3025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-017-2399-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-017-2399-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hagger, Raffael</creatorcontrib><title>The Essential Spectrum of Toeplitz Operators on the Unit Ball</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the corresponding Toeplitz operator T f is Fredholm if and only if f has no zeros on the boundary ∂ B n . As a consequence, the essential spectrum of T f is given by the boundary values of f . We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233, 2013 , Indiana Univ Math J 56(5):2185–2232, 2007 ) and limit operator techniques coming from similar problems on the sequence space ℓ p ( Z ) (Hagger et al. in J Math Anal Appl 437(1):255–291, 2016 ; Lindner and Seidel in J Funct Anal 267(3):901–917, 2014 ; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495, 1998 and references therein).</description><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Economic impact</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAyEQxYnRxFr9AN5IPKMDtAscPGhT_yRNenCbeCMsgm6zXVagB_300qwHL54mmfm9Ny8PoUsK1xRA3CQAYECACsK4UoQeoQmdlY1UUh2jCXAhScXg9RSdpbQtMBOsmqDb-sPhZUquz63p8MvgbI77HQ4e18ENXZu_8Xpw0eQQEw49zoXf9G3G96brztGJN11yF79zijYPy3rxRFbrx-fF3YpYTqtMjBX8zVvJKydtY0vIRvnGce4aa5uZ4Mx4KZmYzyRjIMBT1hhnqCwHzo3iU3Q1-g4xfO5dynob9rEvLzVVAjhwxueFoiNlY0gpOq-H2O5M_NIU9KElPbakSwB9aEnTomGjJhW2f3fxj_O_oh8j3Gkq</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Hagger, Raffael</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4289-3025</orcidid></search><sort><creationdate>20171201</creationdate><title>The Essential Spectrum of Toeplitz Operators on the Unit Ball</title><author>Hagger, Raffael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ac73dfc836e8cbc017b9fbe33ebccb4732af882754822070f12baea1832a33a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Economic impact</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagger, Raffael</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagger, Raffael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Essential Spectrum of Toeplitz Operators on the Unit Ball</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>89</volume><issue>4</issue><spage>519</spage><epage>556</epage><pages>519-556</pages><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the corresponding Toeplitz operator T f is Fredholm if and only if f has no zeros on the boundary ∂ B n . As a consequence, the essential spectrum of T f is given by the boundary values of f . We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233, 2013 , Indiana Univ Math J 56(5):2185–2232, 2007 ) and limit operator techniques coming from similar problems on the sequence space ℓ p ( Z ) (Hagger et al. in J Math Anal Appl 437(1):255–291, 2016 ; Lindner and Seidel in J Funct Anal 267(3):901–917, 2014 ; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495, 1998 and references therein).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-017-2399-1</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-4289-3025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2017-12, Vol.89 (4), p.519-556
issn 0378-620X
1420-8989
language eng
recordid cdi_proquest_journals_1970303235
source SpringerLink Journals - AutoHoldings
subjects Analysis
Continuity (mathematics)
Economic impact
Integrals
Mathematics
Mathematics and Statistics
Operators (mathematics)
title The Essential Spectrum of Toeplitz Operators on the Unit Ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Essential%20Spectrum%20of%20Toeplitz%20Operators%20on%20the%20Unit%20Ball&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Hagger,%20Raffael&rft.date=2017-12-01&rft.volume=89&rft.issue=4&rft.spage=519&rft.epage=556&rft.pages=519-556&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-017-2399-1&rft_dat=%3Cproquest_cross%3E1970303235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970303235&rft_id=info:pmid/&rfr_iscdi=true