The Essential Spectrum of Toeplitz Operators on the Unit Ball
In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces A ν p ( B n ) , where p ∈ ( 1 , ∞ ) and B n ⊂ C n denotes the n -dimensional open unit ball. Let f be a continuous function on the Euclidean closure of B n . It is well-known that then the correspo...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2017-12, Vol.89 (4), p.519-556 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the Fredholm properties of Toeplitz operators acting on weighted Bergman spaces
A
ν
p
(
B
n
)
, where
p
∈
(
1
,
∞
)
and
B
n
⊂
C
n
denotes the
n
-dimensional open unit ball. Let
f
be a continuous function on the Euclidean closure of
B
n
. It is well-known that then the corresponding Toeplitz operator
T
f
is Fredholm if and only if
f
has no zeros on the boundary
∂
B
n
. As a consequence, the essential spectrum of
T
f
is given by the boundary values of
f
. We extend this result to all operators in the algebra generated by Toeplitz operators with bounded symbol (in a sense to be made precise down below). The main ideas are based on the work of Suárez et al. (Integral Equ Oper Theory 75:197–233,
2013
, Indiana Univ Math J 56(5):2185–2232,
2007
) and limit operator techniques coming from similar problems on the sequence space
ℓ
p
(
Z
)
(Hagger et al. in J Math Anal Appl 437(1):255–291,
2016
; Lindner and Seidel in J Funct Anal 267(3):901–917,
2014
; Rabinovich et al. Integral Equ Oper Theory 30(4): 452–495,
1998
and references therein). |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-017-2399-1 |