Repeated SPRT charts for monitoring INAR(1) processes

Poisson integer valued autoregressive (INAR) models have been proposed for modeling correlated count data. Poisson lognormal (PLN) INAR models extend their use to overdispersed contexts. In this paper, we will propose the use of a repeated Sequential Probability Ratio Test (SPRT) procedure to detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2017-12, Vol.33 (8), p.2615-2624
Hauptverfasser: Xu, Shangjie, Jeske, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poisson integer valued autoregressive (INAR) models have been proposed for modeling correlated count data. Poisson lognormal (PLN) INAR models extend their use to overdispersed contexts. In this paper, we will propose the use of a repeated Sequential Probability Ratio Test (SPRT) procedure to detect change in first‐order INAR and PLN INAR models. We consider change in the mean, the autocorrelation parameter, and the overdispersion parameter. Simulation results show the repeated SPRT procedure performs favorably relative to previously proposed CUSUM procedures that are based on either the observations themselves or residuals of the observations from predicted values. A dataset on invasive insect species is used to illustrate the repeated SPRT procedure.
ISSN:0748-8017
1099-1638
DOI:10.1002/qre.2221