On sharp estimates of the convergence of double Fourier–Bessel series
The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a gene...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2017-11, Vol.57 (11), p.1735-1740 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a generalized modulus of continuity are obtained. The proofs of four theorems on this issue, which can be directly applied to solving particular problems of mathematical physics, approximation theory, etc., are presented. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542517110021 |