How to use negative class information for Naive Bayes classification

•Utilization of negative class information in text classification.•Naive Bayes classification using negative class information.•Log-odd rate of positive and negative class probabilities. The Naive Bayes (NB) classifier is a popular classifier for text classification problems due to its simple, flexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2017-11, Vol.53 (6), p.1255-1268
1. Verfasser: Ko, Youngjoong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Utilization of negative class information in text classification.•Naive Bayes classification using negative class information.•Log-odd rate of positive and negative class probabilities. The Naive Bayes (NB) classifier is a popular classifier for text classification problems due to its simple, flexible framework and its reasonable performance. In this paper, we present how to effectively utilize negative class information to improve NB classification. As opposed to information retrieval, supervised learning based text classification already obtains class information, a negative class as well as a positive class, from a labeled training dataset. Since the negative class can also provide significant information to improve the NB classifier, the negative class information is applied to the NB classifier through two phases of indexing and class prediction tasks. As a result, the new classifier using the negative class information consistently performs better than the traditional multinomial NB classifier.
ISSN:0306-4573
1873-5371
DOI:10.1016/j.ipm.2017.07.005