Remendable polymers via reversible Diels–Alder cycloaddition of anthracene‐containing copolymers with fullerenes

ABSTRACT Poly(lauryl methacrylate)s with anthracene moieties in the side chain were converted with C60‐fullerene and phenyl‐C61‐butyric acid methyl ester (PCBM), resulting in new remendable (self‐healing) polymeric materials. The utilization of differently substituted anthracene monomers enabled the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2018-03, Vol.135 (10), p.n/a
Hauptverfasser: Kötteritzsch, Julia, Geitner, Robert, Ahner, Johannes, Abend, Marcus, Zechel, Stefan, Vitz, Jürgen, Hoeppener, Stephanie, Dietzek, Benjamin, Schmitt, Michael, Popp, Jürgen, Schubert, Ulrich S., Hager, Martin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Poly(lauryl methacrylate)s with anthracene moieties in the side chain were converted with C60‐fullerene and phenyl‐C61‐butyric acid methyl ester (PCBM), resulting in new remendable (self‐healing) polymeric materials. The utilization of differently substituted anthracene monomers enabled the tuning of the reactivity and the resulting mechanical properties. Copolymers with different contents of the anthracene moieties were synthesized and characterized using size exclusion chromatography, 1H nuclear magnetic resonance (NMR) spectroscopy as well as differential scanning calorimetry (DSC). 1H NMR spectroscopic studies were utilized in order to investigate the reversibility of the Diels–Alder reaction between copolymers with C60‐fullerene and PCBM, respectively, in solution. In order to investigate the conversion of the polymers with C60‐fullerene and PCBM in bulk, additionally, DSC, nanoindentation, rheology, atomic force microscopy (AFM), 3D microscopy, simultaneous thermal analysis (STA) and FT‐Raman investigations were performed. The fullerene‐containing copolymers could be healed in a temperature range of 40–80 °C. Consequently, a new generation of low temperature remendable polymers could be established. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45916.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.45916