Hybrid double‐network hydrogel based on poly(aspartic acid) and poly(acryl amide) with improved mechanical properties
ABSTRACT Hydrogels usually have a smaller mechanical strength and toughness than generic polymeric materials. Therefore, many studies report improvements for mechanical properties of hydrogels by preparing double‐network hydrogels, nanocomposite hydrogels, and nanostructured hydrogels. In this study...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2018-03, Vol.135 (9), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Hydrogels usually have a smaller mechanical strength and toughness than generic polymeric materials. Therefore, many studies report improvements for mechanical properties of hydrogels by preparing double‐network hydrogels, nanocomposite hydrogels, and nanostructured hydrogels. In this study, interpenetrating‐type dually‐crosslinked hydrogels were prepared via free radical crosslinking polymerization of acrylamide monomers in the presence of poly(aspartic acid) and subsequent immersion in a metal ion containing aqueous solution to induce extra physical crosslinking through ionic or coordination bonding. Using this approach, the mechanical properties of inherently weak and brittle homopolymer gels could be improved via interpenetrating the double network formed by both covalent bonding and metal coordination‐assisted reversible physical crosslinks. The preparation, swelling behavior, morphology, and mechanical properties of these hydrogels are presented. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45925. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.45925 |