Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance
Supply chain finance (SCF) becomes more important for small- and medium-sized enterprises (SMEs) due to global credit crunch, supply chain financing woes and tightening credit criteria for corporate lending. Currently, predicting SME credit risk is significant for guaranteeing SCF in smooth operatio...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2017-12, Vol.28 (Suppl 1), p.41-50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supply chain finance (SCF) becomes more important for small- and medium-sized enterprises (SMEs) due to global credit crunch, supply chain financing woes and tightening credit criteria for corporate lending. Currently, predicting SME credit risk is significant for guaranteeing SCF in smooth operation. In this paper, we apply six methods, i.e., one individual machine learning (IML, i.e., decision tree) method, three ensemble machine learning methods [EML, i.e., bagging, boosting, and random subspace (RS)], and two integrated ensemble machine learning methods (IEML, i.e., RS–boosting and multi-boosting), to predict SMEs credit risk in SCF and compare the effectiveness and feasibility of six methods. In the experiment, we choose the quarterly financial and non-financial data of 48 listed SMEs from Small and Medium Enterprise Board of Shenzhen Stock Exchange, six listed core enterprises (CEs) from Shanghai Stock Exchange and three listed CEs from Shenzhen Stock Exchange during the period of 2012–2013 as the empirical samples. Experimental results reveal that the IEML methods acquire better performance than IML and EML method. In particular, RS–boosting is the best method to predict SMEs credit risk among six methods. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-016-2304-x |