Choosing the best evolutionary algorithm to optimize the multiobjective shell-and-tube heat exchanger design problem using PROMETHEE

•Pareto solutions for the STHE MOO problem are found using evolutionary algorithms.•The performance of each algorithm is analyzed using statistical metrics.•The PROMETHEE method is used to choose the best evolutionary algorithm.•The experiments show MOPSO as the most robust algorithm. The aim of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2017-12, Vol.127, p.1049-1061
Hauptverfasser: Saldanha, Wagner Henrique, Soares, Gustavo Luís, Machado-Coelho, Thiago Melo, dos Santos, Emanuel Diniz, Ekel, Petr Iakovlevitch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Pareto solutions for the STHE MOO problem are found using evolutionary algorithms.•The performance of each algorithm is analyzed using statistical metrics.•The PROMETHEE method is used to choose the best evolutionary algorithm.•The experiments show MOPSO as the most robust algorithm. The aim of this paper is twofold. First, to find Pareto solutions for minimization of the heat-transfer area and pumping power to solve a shell-and-tube heat exchanger multiobjective optimization problem using the Predator-Prey, Multiobjective Particle Swarm Optimization, and Non-Dominated Sorting Genetic Algorithm II evolutionary algorithms. Each algorithm’s performance is analyzed using the following statistical metrics: Hypervolume, Spacing and Pair-wise Distance. Second, to use the Preference Ranking Organization Method for Enrichment Evaluations decision-making method to choose the best evolutionary algorithms. The criteria used in decision making are the statistical metrics and the annual cost heat exchanger operation. The results show the Multiobjective Particle Swarm Optimization as the most robust algorithm during decision making.
ISSN:1359-4311
1873-5606
DOI:10.1016/j.applthermaleng.2017.08.052