Growth of hierarchical birnessite-type Cu0.45Mn0.55O2 nanosheets on flexible carbon textile for high-performance supercapacitors electrode

The fabrication of high capacitance binder-free electrode materials with the advantages of having low costs and low toxicity has been attracting great attention for supercapacitors. In this study, we report the synthesis of hierarchical birnessite-type 3D Cu0.45Mn0.55O2 (CMO) nanosheets (NS) directl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2017-11, Vol.725, p.1223-1229
Hauptverfasser: Shah, Hidayat Ullah, Wang, Fengping, Javed, Muhammad Sufyan, Shaheen, Nusrat, Ye, Yaping, Wen, Jinchang, Ali, Shujaat, Wang, Ziya, He, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fabrication of high capacitance binder-free electrode materials with the advantages of having low costs and low toxicity has been attracting great attention for supercapacitors. In this study, we report the synthesis of hierarchical birnessite-type 3D Cu0.45Mn0.55O2 (CMO) nanosheets (NS) directly grown on flexible carbon textile (CT) without any surfactant via a simple hydrothermal method. The CMO-NS supported on carbon textile were directly used as an integrated electrode for electrochemical measurments. The binder-free electrodes yielded high specific capacitance of 983 F g−1 in 1.0 M Na2SO4 aqueous electrolyte at a constant current density of 1.0 mAcm−2. In addition, the CMO-NS electrode displayed outstanding cyclic stability by retaining 90% capacitance after 3000 cycles. Thus, the Cu0.45Mn0.55O2 nanosheets combined with carbon textile form a promising electrode material for high-performance pseudocapacitors that have light weight and low cost. [Display omitted] •3D Cu0.45Mn0.55O2 nanosheets grown on carbon textile for supercapacitor electrode.•The as-prepared electrode exhibit a highest specific capacitance of 983 F g−1.•Excellent cycling stability: 90% capacitance retention after 3000 cycles.•This approach provides a new way for fabricating electrode materials.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2017.05.094