Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment

A two-step intercritical heat treatment was designed to obtain a multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and stable retained austenite in a low carbon and copper alloyed steel, characterized by high strength and high ductility combination. The evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-09, Vol.705, p.89-97
Hauptverfasser: Han, G., Xie, Z.J., Xiong, L., Shang, C.J., Misra, R.D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 89
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 705
creator Han, G.
Xie, Z.J.
Xiong, L.
Shang, C.J.
Misra, R.D.K.
description A two-step intercritical heat treatment was designed to obtain a multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and stable retained austenite in a low carbon and copper alloyed steel, characterized by high strength and high ductility combination. The evolution of copper precipitation during intercritical tempering was studied by transmission electron microscopy (TEM). Electron microscopy studies indicated that the precipitation of copper during tempering followed the sequence (as a function of time): twinned 9R-Cu (0.5h) → de-twinned 9R-Cu (1h) → ε-Cu (greater than 3h), which was accompanied by increase in the size of precipitates from ~ 11nm to ~ 30nm. Considering the cutting mechanism of precipitation strengthening, ε-Cu precipitation contributed to ~ 248MPa and ~ 207MPa toward yield strength for 3h and 5h tempering, respectively. The average size of niobium-containing carbides varied marginally from ~ 11–16nm and had a Baker–Nutting (B-N) orientation relationship with the ferrite matrix. The combination of transformation induced plasticity (TRIP) effect and nano-sized precipitation strengthening contributed to excellent mechanical properties (yield strength > 700MPa, tensile strength > 800MPa, the uniform elongation > 16% and the total elongation > 30%).
doi_str_mv 10.1016/j.msea.2017.08.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967358284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317310742</els_id><sourcerecordid>1967358284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e269aa6a0a9fa6c2679fe2cfd7d8b8db48848bed0f93e3b306236106446ba87a3</originalsourceid><addsrcrecordid>eNp9kL2O1DAQxy0EEsvBC1BZok4Y21nHkWjQ6fiQTqKB2po4k4tXWXuxnUPLK_DSeG-pqab4f8zMj7G3AloBQr8_tMdM2EoQfQumBS2esZ0wvWq6QennbAeDFM0eBvWSvcr5AACig_2O_bl7jOtWfAw8zjxgiE32v4mfEjl_8gWfJAwTP5JbMHiHaxXjiVLxlLmvIl_8w8JzSRQeytJMmyt-9eXM1_iL47rGcxWJVl6WFLdq9aFQcsmXp7aaw3KkUF6zFzOumd78mzfsx6e777dfmvtvn7_efrxvnJKmNCT1gKgRcJhRO6n7YSbp5qmfzGimsTOmMyNNMA-K1KhAS6UF6K7TI5oe1Q17d-2tf_zcKBd7iFsKdaUVg-7V3kjTVZe8ulyKOSea7Sn5I6azFWAv0O3BXqDbC3QLxlboNfThGqJ6_6OnZLPzFBxNvgItdor-f_G_zLmPKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967358284</pqid></control><display><type>article</type><title>Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, G. ; Xie, Z.J. ; Xiong, L. ; Shang, C.J. ; Misra, R.D.K.</creator><creatorcontrib>Han, G. ; Xie, Z.J. ; Xiong, L. ; Shang, C.J. ; Misra, R.D.K.</creatorcontrib><description>A two-step intercritical heat treatment was designed to obtain a multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and stable retained austenite in a low carbon and copper alloyed steel, characterized by high strength and high ductility combination. The evolution of copper precipitation during intercritical tempering was studied by transmission electron microscopy (TEM). Electron microscopy studies indicated that the precipitation of copper during tempering followed the sequence (as a function of time): twinned 9R-Cu (0.5h) → de-twinned 9R-Cu (1h) → ε-Cu (greater than 3h), which was accompanied by increase in the size of precipitates from ~ 11nm to ~ 30nm. Considering the cutting mechanism of precipitation strengthening, ε-Cu precipitation contributed to ~ 248MPa and ~ 207MPa toward yield strength for 3h and 5h tempering, respectively. The average size of niobium-containing carbides varied marginally from ~ 11–16nm and had a Baker–Nutting (B-N) orientation relationship with the ferrite matrix. The combination of transformation induced plasticity (TRIP) effect and nano-sized precipitation strengthening contributed to excellent mechanical properties (yield strength &gt; 700MPa, tensile strength &gt; 800MPa, the uniform elongation &gt; 16% and the total elongation &gt; 30%).</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.08.061</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Copper ; Copper base alloys ; Copper precipitation ; Ductility ; Electron microscopy ; Elongation ; Evolution ; Ferrite ; Heat treatment ; High strength ; High strength alloys ; High strength steel ; Intercritical tempering ; Low alloy steels ; Low carbon steels ; Martensitic transformations ; Mechanical properties ; Niobium ; Precipitates ; Precipitation hardening ; Retained austenite ; Steel alloys ; Tempered martensite ; Tempering ; Yield strength</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-09, Vol.705, p.89-97</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 29, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e269aa6a0a9fa6c2679fe2cfd7d8b8db48848bed0f93e3b306236106446ba87a3</citedby><cites>FETCH-LOGICAL-c328t-e269aa6a0a9fa6c2679fe2cfd7d8b8db48848bed0f93e3b306236106446ba87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2017.08.061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Han, G.</creatorcontrib><creatorcontrib>Xie, Z.J.</creatorcontrib><creatorcontrib>Xiong, L.</creatorcontrib><creatorcontrib>Shang, C.J.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><title>Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>A two-step intercritical heat treatment was designed to obtain a multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and stable retained austenite in a low carbon and copper alloyed steel, characterized by high strength and high ductility combination. The evolution of copper precipitation during intercritical tempering was studied by transmission electron microscopy (TEM). Electron microscopy studies indicated that the precipitation of copper during tempering followed the sequence (as a function of time): twinned 9R-Cu (0.5h) → de-twinned 9R-Cu (1h) → ε-Cu (greater than 3h), which was accompanied by increase in the size of precipitates from ~ 11nm to ~ 30nm. Considering the cutting mechanism of precipitation strengthening, ε-Cu precipitation contributed to ~ 248MPa and ~ 207MPa toward yield strength for 3h and 5h tempering, respectively. The average size of niobium-containing carbides varied marginally from ~ 11–16nm and had a Baker–Nutting (B-N) orientation relationship with the ferrite matrix. The combination of transformation induced plasticity (TRIP) effect and nano-sized precipitation strengthening contributed to excellent mechanical properties (yield strength &gt; 700MPa, tensile strength &gt; 800MPa, the uniform elongation &gt; 16% and the total elongation &gt; 30%).</description><subject>Copper</subject><subject>Copper base alloys</subject><subject>Copper precipitation</subject><subject>Ductility</subject><subject>Electron microscopy</subject><subject>Elongation</subject><subject>Evolution</subject><subject>Ferrite</subject><subject>Heat treatment</subject><subject>High strength</subject><subject>High strength alloys</subject><subject>High strength steel</subject><subject>Intercritical tempering</subject><subject>Low alloy steels</subject><subject>Low carbon steels</subject><subject>Martensitic transformations</subject><subject>Mechanical properties</subject><subject>Niobium</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Retained austenite</subject><subject>Steel alloys</subject><subject>Tempered martensite</subject><subject>Tempering</subject><subject>Yield strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL2O1DAQxy0EEsvBC1BZok4Y21nHkWjQ6fiQTqKB2po4k4tXWXuxnUPLK_DSeG-pqab4f8zMj7G3AloBQr8_tMdM2EoQfQumBS2esZ0wvWq6QennbAeDFM0eBvWSvcr5AACig_2O_bl7jOtWfAw8zjxgiE32v4mfEjl_8gWfJAwTP5JbMHiHaxXjiVLxlLmvIl_8w8JzSRQeytJMmyt-9eXM1_iL47rGcxWJVl6WFLdq9aFQcsmXp7aaw3KkUF6zFzOumd78mzfsx6e777dfmvtvn7_efrxvnJKmNCT1gKgRcJhRO6n7YSbp5qmfzGimsTOmMyNNMA-K1KhAS6UF6K7TI5oe1Q17d-2tf_zcKBd7iFsKdaUVg-7V3kjTVZe8ulyKOSea7Sn5I6azFWAv0O3BXqDbC3QLxlboNfThGqJ6_6OnZLPzFBxNvgItdor-f_G_zLmPKA</recordid><startdate>20170929</startdate><enddate>20170929</enddate><creator>Han, G.</creator><creator>Xie, Z.J.</creator><creator>Xiong, L.</creator><creator>Shang, C.J.</creator><creator>Misra, R.D.K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170929</creationdate><title>Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment</title><author>Han, G. ; Xie, Z.J. ; Xiong, L. ; Shang, C.J. ; Misra, R.D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e269aa6a0a9fa6c2679fe2cfd7d8b8db48848bed0f93e3b306236106446ba87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Copper</topic><topic>Copper base alloys</topic><topic>Copper precipitation</topic><topic>Ductility</topic><topic>Electron microscopy</topic><topic>Elongation</topic><topic>Evolution</topic><topic>Ferrite</topic><topic>Heat treatment</topic><topic>High strength</topic><topic>High strength alloys</topic><topic>High strength steel</topic><topic>Intercritical tempering</topic><topic>Low alloy steels</topic><topic>Low carbon steels</topic><topic>Martensitic transformations</topic><topic>Mechanical properties</topic><topic>Niobium</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Retained austenite</topic><topic>Steel alloys</topic><topic>Tempered martensite</topic><topic>Tempering</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, G.</creatorcontrib><creatorcontrib>Xie, Z.J.</creatorcontrib><creatorcontrib>Xiong, L.</creatorcontrib><creatorcontrib>Shang, C.J.</creatorcontrib><creatorcontrib>Misra, R.D.K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, G.</au><au>Xie, Z.J.</au><au>Xiong, L.</au><au>Shang, C.J.</au><au>Misra, R.D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-09-29</date><risdate>2017</risdate><volume>705</volume><spage>89</spage><epage>97</epage><pages>89-97</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A two-step intercritical heat treatment was designed to obtain a multi-phase microstructure consisting of intercritical ferrite, tempered martensite/bainite and stable retained austenite in a low carbon and copper alloyed steel, characterized by high strength and high ductility combination. The evolution of copper precipitation during intercritical tempering was studied by transmission electron microscopy (TEM). Electron microscopy studies indicated that the precipitation of copper during tempering followed the sequence (as a function of time): twinned 9R-Cu (0.5h) → de-twinned 9R-Cu (1h) → ε-Cu (greater than 3h), which was accompanied by increase in the size of precipitates from ~ 11nm to ~ 30nm. Considering the cutting mechanism of precipitation strengthening, ε-Cu precipitation contributed to ~ 248MPa and ~ 207MPa toward yield strength for 3h and 5h tempering, respectively. The average size of niobium-containing carbides varied marginally from ~ 11–16nm and had a Baker–Nutting (B-N) orientation relationship with the ferrite matrix. The combination of transformation induced plasticity (TRIP) effect and nano-sized precipitation strengthening contributed to excellent mechanical properties (yield strength &gt; 700MPa, tensile strength &gt; 800MPa, the uniform elongation &gt; 16% and the total elongation &gt; 30%).</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.08.061</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-09, Vol.705, p.89-97
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_1967358284
source Access via ScienceDirect (Elsevier)
subjects Copper
Copper base alloys
Copper precipitation
Ductility
Electron microscopy
Elongation
Evolution
Ferrite
Heat treatment
High strength
High strength alloys
High strength steel
Intercritical tempering
Low alloy steels
Low carbon steels
Martensitic transformations
Mechanical properties
Niobium
Precipitates
Precipitation hardening
Retained austenite
Steel alloys
Tempered martensite
Tempering
Yield strength
title Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20nano-size%20precipitation%20and%20mechanical%20properties%20in%20a%20high%20strength-ductility%20low%20alloy%20steel%20through%20intercritical%20treatment&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Han,%20G.&rft.date=2017-09-29&rft.volume=705&rft.spage=89&rft.epage=97&rft.pages=89-97&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.08.061&rft_dat=%3Cproquest_cross%3E1967358284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967358284&rft_id=info:pmid/&rft_els_id=S0921509317310742&rfr_iscdi=true