Graphene/surfactant-assisted synthesis of edge-terminated molybdenum disulfide with enlarged interlayer spacing
[Display omitted] •Edge-terminated MoS2 with enlarged interlayer spacing was fabricated.•The new type MoS2 was fabricated with the help of graphene oxide and surfactant.•The synthetic approach may be extended to grow other layered nanomaterials. The paper presents a facile and effective method to fa...
Gespeichert in:
Veröffentlicht in: | Materials letters 2018-01, Vol.210, p.248-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Edge-terminated MoS2 with enlarged interlayer spacing was fabricated.•The new type MoS2 was fabricated with the help of graphene oxide and surfactant.•The synthetic approach may be extended to grow other layered nanomaterials.
The paper presents a facile and effective method to fabricate the new type MoS2 with expanded interlayer spacing (∼9.70Å) and high-density edges in the presence of graphene oxide (GO) and surfactant. The abundant oxygen-containing groups on GO surfaces can provide nucleation sites through electrostatic interaction with the assistance of surfactant to promote heterogeneous nucleation of MoS2 on GO surfaces. During reaction, GO was reduced to graphene (rGO) by eliminating the oxygen-containing groups. The nonwettability between MoS2 and rGO compels the growing MoS2 nanosheets to stretch out of the rGO surfaces, leading to the high-density edges. Besides, the excess surfactant can insert the interlayer of MoS2, causing the enlarged interlayer spacing. The obtained MoS2 could exhibit improved catalytic activity and the synthetic approach presented here may be extended to grow other transition metal dichalcogenide materials. |
---|---|
ISSN: | 0167-577X 1873-4979 |
DOI: | 10.1016/j.matlet.2017.09.043 |