Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads
•An analytical model characterizing elastic-plastic behavior is proposed for strands and ropes, especially for multi-strands structures.•The contact status within multilayered strands is carefully studied.•The different yielding and failure behaviors of wire strands under varying loading conditions...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2017-12, Vol.129, p.103-118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | International journal of solids and structures |
container_volume | 129 |
creator | Xiang, L. Wang, H.Y. Chen, Y. Guan, Y.J. Dai, L.H. |
description | •An analytical model characterizing elastic-plastic behavior is proposed for strands and ropes, especially for multi-strands structures.•The contact status within multilayered strands is carefully studied.•The different yielding and failure behaviors of wire strands under varying loading conditions are analyzed.
Elastic-plastic response is greatly involved in the failure of wire ropes. Based on the derivation of the local deformation parameters of individual wire, an analytical model characterizing the elastic-plastic behavior for both wire strands and multi-strand ropes is developed in this paper. Also, the contact status within a multilayered strand is carefully studied to achieve a full understanding of wire stresses. Details of the surface strain fields of ropes are captured by 3D digital image correlation (3D-DIC) technique and the results agree well with the prediction of the present model. Varying loading conditions are considered to analyze the yielding and failure behavior of wire strands. It is found that the rotation of ropes (no matter its positive or negative) will increase the overall stress level over the wire cross section, however, restraining the rope ends leads to higher contact stress. Increasing the helix angle moderately may be an effective method to reduce the contact pressure of strand wires. Our model provides straightforward prediction of the elastic-plastic response of wire ropes and proves an effective tool for rope design due to a great reduction of time consuming in numerical simulations. |
doi_str_mv | 10.1016/j.ijsolstr.2017.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967357708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768317304031</els_id><sourcerecordid>1967357708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f968c1ac255dda8d73a1c4103855d5c7dc5dd77bdd7bd9d38bfaa0588dd226723</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIvIEucE9ZxEzs3UFUKUiUucLZc20GO3DjYLo-_x23gzGVnNZqZ1Q5C1wRKAqS57UvbR-9iCmUFhJXQlgD8BM0IZ21RkUVzimYAFRSs4fQcXcTYA8CCtjBDcuVkTFYV44R457VxdnjDvsM7k6RzmczZctAR54E_bTA4-NFEvB-0CVh-WelwMkO0fjhKkg_H3Xmp4yU666SL5uoX5-j1YfWyfCw2z-un5f2mUJTzVHRtwxWRqqprrSXXjEqiFgQoz0StmFaZZ2ybx1a3mvJtJyXUnGtdVQ2r6BzdTLlj8O97E5Po_T4M-aQgbcNozRjwrGomlQo-xmA6MQa7k-FbEBCHOkUv_uoUhzoFtAKOxrvJaPIPH9YEEZU1gzI696GS0N7-F_EDireEIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967357708</pqid></control><display><type>article</type><title>Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiang, L. ; Wang, H.Y. ; Chen, Y. ; Guan, Y.J. ; Dai, L.H.</creator><creatorcontrib>Xiang, L. ; Wang, H.Y. ; Chen, Y. ; Guan, Y.J. ; Dai, L.H.</creatorcontrib><description>•An analytical model characterizing elastic-plastic behavior is proposed for strands and ropes, especially for multi-strands structures.•The contact status within multilayered strands is carefully studied.•The different yielding and failure behaviors of wire strands under varying loading conditions are analyzed.
Elastic-plastic response is greatly involved in the failure of wire ropes. Based on the derivation of the local deformation parameters of individual wire, an analytical model characterizing the elastic-plastic behavior for both wire strands and multi-strand ropes is developed in this paper. Also, the contact status within a multilayered strand is carefully studied to achieve a full understanding of wire stresses. Details of the surface strain fields of ropes are captured by 3D digital image correlation (3D-DIC) technique and the results agree well with the prediction of the present model. Varying loading conditions are considered to analyze the yielding and failure behavior of wire strands. It is found that the rotation of ropes (no matter its positive or negative) will increase the overall stress level over the wire cross section, however, restraining the rope ends leads to higher contact stress. Increasing the helix angle moderately may be an effective method to reduce the contact pressure of strand wires. Our model provides straightforward prediction of the elastic-plastic response of wire ropes and proves an effective tool for rope design due to a great reduction of time consuming in numerical simulations.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2017.09.008</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Axial stress ; Cables ; Computer simulation ; Contact angle ; Contact pressure ; Contact stresses ; Deformation ; Digital imaging ; Elastic deformation ; Elastic-plastic behavior ; Elastoplasticity ; Failure analysis ; Local strain measurement ; Mathematical models ; Multi-strand rope ; Rope ; Rotating matter ; Simulation ; Straight strand ; Strands ; Stress state ; Wire ; Wire contact ; Yielding and failure</subject><ispartof>International journal of solids and structures, 2017-12, Vol.129, p.103-118</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Dec 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f968c1ac255dda8d73a1c4103855d5c7dc5dd77bdd7bd9d38bfaa0588dd226723</citedby><cites>FETCH-LOGICAL-c388t-f968c1ac255dda8d73a1c4103855d5c7dc5dd77bdd7bd9d38bfaa0588dd226723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2017.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xiang, L.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Guan, Y.J.</creatorcontrib><creatorcontrib>Dai, L.H.</creatorcontrib><title>Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads</title><title>International journal of solids and structures</title><description>•An analytical model characterizing elastic-plastic behavior is proposed for strands and ropes, especially for multi-strands structures.•The contact status within multilayered strands is carefully studied.•The different yielding and failure behaviors of wire strands under varying loading conditions are analyzed.
Elastic-plastic response is greatly involved in the failure of wire ropes. Based on the derivation of the local deformation parameters of individual wire, an analytical model characterizing the elastic-plastic behavior for both wire strands and multi-strand ropes is developed in this paper. Also, the contact status within a multilayered strand is carefully studied to achieve a full understanding of wire stresses. Details of the surface strain fields of ropes are captured by 3D digital image correlation (3D-DIC) technique and the results agree well with the prediction of the present model. Varying loading conditions are considered to analyze the yielding and failure behavior of wire strands. It is found that the rotation of ropes (no matter its positive or negative) will increase the overall stress level over the wire cross section, however, restraining the rope ends leads to higher contact stress. Increasing the helix angle moderately may be an effective method to reduce the contact pressure of strand wires. Our model provides straightforward prediction of the elastic-plastic response of wire ropes and proves an effective tool for rope design due to a great reduction of time consuming in numerical simulations.</description><subject>Axial stress</subject><subject>Cables</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Elastic deformation</subject><subject>Elastic-plastic behavior</subject><subject>Elastoplasticity</subject><subject>Failure analysis</subject><subject>Local strain measurement</subject><subject>Mathematical models</subject><subject>Multi-strand rope</subject><subject>Rope</subject><subject>Rotating matter</subject><subject>Simulation</subject><subject>Straight strand</subject><subject>Strands</subject><subject>Stress state</subject><subject>Wire</subject><subject>Wire contact</subject><subject>Yielding and failure</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMIvIEucE9ZxEzs3UFUKUiUucLZc20GO3DjYLo-_x23gzGVnNZqZ1Q5C1wRKAqS57UvbR-9iCmUFhJXQlgD8BM0IZ21RkUVzimYAFRSs4fQcXcTYA8CCtjBDcuVkTFYV44R457VxdnjDvsM7k6RzmczZctAR54E_bTA4-NFEvB-0CVh-WelwMkO0fjhKkg_H3Xmp4yU666SL5uoX5-j1YfWyfCw2z-un5f2mUJTzVHRtwxWRqqprrSXXjEqiFgQoz0StmFaZZ2ybx1a3mvJtJyXUnGtdVQ2r6BzdTLlj8O97E5Po_T4M-aQgbcNozRjwrGomlQo-xmA6MQa7k-FbEBCHOkUv_uoUhzoFtAKOxrvJaPIPH9YEEZU1gzI696GS0N7-F_EDireEIw</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Xiang, L.</creator><creator>Wang, H.Y.</creator><creator>Chen, Y.</creator><creator>Guan, Y.J.</creator><creator>Dai, L.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20171215</creationdate><title>Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads</title><author>Xiang, L. ; Wang, H.Y. ; Chen, Y. ; Guan, Y.J. ; Dai, L.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f968c1ac255dda8d73a1c4103855d5c7dc5dd77bdd7bd9d38bfaa0588dd226723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Axial stress</topic><topic>Cables</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Elastic deformation</topic><topic>Elastic-plastic behavior</topic><topic>Elastoplasticity</topic><topic>Failure analysis</topic><topic>Local strain measurement</topic><topic>Mathematical models</topic><topic>Multi-strand rope</topic><topic>Rope</topic><topic>Rotating matter</topic><topic>Simulation</topic><topic>Straight strand</topic><topic>Strands</topic><topic>Stress state</topic><topic>Wire</topic><topic>Wire contact</topic><topic>Yielding and failure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, L.</creatorcontrib><creatorcontrib>Wang, H.Y.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Guan, Y.J.</creatorcontrib><creatorcontrib>Dai, L.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, L.</au><au>Wang, H.Y.</au><au>Chen, Y.</au><au>Guan, Y.J.</au><au>Dai, L.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads</atitle><jtitle>International journal of solids and structures</jtitle><date>2017-12-15</date><risdate>2017</risdate><volume>129</volume><spage>103</spage><epage>118</epage><pages>103-118</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>•An analytical model characterizing elastic-plastic behavior is proposed for strands and ropes, especially for multi-strands structures.•The contact status within multilayered strands is carefully studied.•The different yielding and failure behaviors of wire strands under varying loading conditions are analyzed.
Elastic-plastic response is greatly involved in the failure of wire ropes. Based on the derivation of the local deformation parameters of individual wire, an analytical model characterizing the elastic-plastic behavior for both wire strands and multi-strand ropes is developed in this paper. Also, the contact status within a multilayered strand is carefully studied to achieve a full understanding of wire stresses. Details of the surface strain fields of ropes are captured by 3D digital image correlation (3D-DIC) technique and the results agree well with the prediction of the present model. Varying loading conditions are considered to analyze the yielding and failure behavior of wire strands. It is found that the rotation of ropes (no matter its positive or negative) will increase the overall stress level over the wire cross section, however, restraining the rope ends leads to higher contact stress. Increasing the helix angle moderately may be an effective method to reduce the contact pressure of strand wires. Our model provides straightforward prediction of the elastic-plastic response of wire ropes and proves an effective tool for rope design due to a great reduction of time consuming in numerical simulations.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2017.09.008</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2017-12, Vol.129, p.103-118 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_1967357708 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Axial stress Cables Computer simulation Contact angle Contact pressure Contact stresses Deformation Digital imaging Elastic deformation Elastic-plastic behavior Elastoplasticity Failure analysis Local strain measurement Mathematical models Multi-strand rope Rope Rotating matter Simulation Straight strand Strands Stress state Wire Wire contact Yielding and failure |
title | Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic-plastic%20modeling%20of%20metallic%20strands%20and%20wire%20ropes%20under%20axial%20tension%20and%20torsion%20loads&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Xiang,%20L.&rft.date=2017-12-15&rft.volume=129&rft.spage=103&rft.epage=118&rft.pages=103-118&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2017.09.008&rft_dat=%3Cproquest_cross%3E1967357708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1967357708&rft_id=info:pmid/&rft_els_id=S0020768317304031&rfr_iscdi=true |