Maximal Dimension of Unit Simplices
For an arbitrary field F the maximal number omega(F n ) of points in F n mutually distance 1 apart with respect to the standard inner product is investigated. If the characteristic char(F) is different from 2, then the values of omega(F n ) lie between n - 1 and n + 2. In particular, we answer compl...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2005-07, Vol.34 (1), p.167-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an arbitrary field F the maximal number omega(F n ) of points in F n mutually distance 1 apart with respect to the standard inner product is investigated. If the characteristic char(F) is different from 2, then the values of omega(F n ) lie between n - 1 and n + 2. In particular, we answer completely for which n a simplex of q points with edge length 1 can be embedded in rational n-space. Our results imply for almost all even n that omage(Q n ) = n and for almost all odd n that omega(Q n ) = n - 1. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-004-1155-x |