Maximal Dimension of Unit Simplices

For an arbitrary field F the maximal number omega(F n ) of points in F n mutually distance 1 apart with respect to the standard inner product is investigated. If the characteristic char(F) is different from 2, then the values of omega(F n ) lie between n - 1 and n + 2. In particular, we answer compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2005-07, Vol.34 (1), p.167-177
Hauptverfasser: Elsholtz, Christian, Klotz, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an arbitrary field F the maximal number omega(F n ) of points in F n mutually distance 1 apart with respect to the standard inner product is investigated. If the characteristic char(F) is different from 2, then the values of omega(F n ) lie between n - 1 and n + 2. In particular, we answer completely for which n a simplex of q points with edge length 1 can be embedded in rational n-space. Our results imply for almost all even n that omage(Q n ) = n and for almost all odd n that omega(Q n ) = n - 1. [PUBLICATION ABSTRACT]
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-004-1155-x