Strategy for automated metabolic profiling of glioma subtypes from ex-vivo HRMAS spectra
Introduction Infiltrating gliomas are primary brain tumors that express significant biological and clinical heterogeneity in adults, which complicates their treatment and prognosis. Characterization of tumor subtypes using spectroscopic analysis may assist in predicting malignant transformation and...
Gespeichert in:
Veröffentlicht in: | Metabolomics 2017-12, Vol.13 (12), p.1-8, Article 149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction
Infiltrating gliomas are primary brain tumors that express significant biological and clinical heterogeneity in adults, which complicates their treatment and prognosis. Characterization of tumor subtypes using spectroscopic analysis may assist in predicting malignant transformation and quantification of response to therapy.
Study objective
To implement an automated algorithm for classification of metabolomic profiles for the classification of glioma pathological grades and the prediction of malignant progression using spectra obtained by high-resolution magic angle spinning (HR-MAS) spectroscopy of patient-derived tissue samples.
Methods
237 image-guided tissue samples were obtained from 152 patients who underwent surgery for newly diagnosed or recurrent glioma and analyzed via HR-MAS spectroscopy. Orthogonal projection to latent structures discriminant analysis was used as a classifier and the variable-influence-on-projection values were evaluated to identify signature spectral regions.
Results
The accuracy of classifiers developed for discriminating glioma subtypes was 68% for newly diagnosed grade II versus III samples; 86 and 92% for new and recurrent grade III versus IV, respectively; 95% for newly diagnosed grade II versus IV; and 88% for recurrent grade II versus IV lesions. Classifiers distinguished between samples from newly diagnosed vs. recurrent lesions with an accuracy of 78% for grade III and 99% for grade IV glioma.
Conclusion
Classifying metabolomic profiles for new and recurrent glioma without prior assumptions regarding spectral components identified candidate in vivo biomarkers for use in assessing changes that are likely to impact treatment decisions. |
---|---|
ISSN: | 1573-3882 1573-3890 |
DOI: | 10.1007/s11306-017-1285-9 |