Doubly Transitive Automorphism Groups of Combinatorial Surfaces

The combinatorial surfaces with doubly transitive automorphism groups are classified. This is established by classifying the automorphism groups of combinatorial surfaces which act doubly transitively on the vertices of the surface. The doubly transitive automorphism groups of combinatorial surfaces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2003-04, Vol.29 (3), p.445-457
Hauptverfasser: Kimmerle, W., Kouzoudi, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combinatorial surfaces with doubly transitive automorphism groups are classified. This is established by classifying the automorphism groups of combinatorial surfaces which act doubly transitively on the vertices of the surface. The doubly transitive automorphism groups of combinatorial surfaces are the symmetric group S4 , the alternating group A5 and the Frobenius group C7 (dot) C6 . In each case the combinatorial surface is uniquely determined. The symmetric group S4 acts doubly transitively on the tetrahedron surface, the alternating group A5 on the triangulation of the projective plane with six vertices and the Frobenius group C7 (dot) C6 on the Moebius torus with seven vertices. [PUBLICATION ABSTRACT]
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-002-2836-y