Total Curvature and Spiralling Shortest Paths

This paper gives a partial confirmation of a conjecture of Agarwal, Har-Peled, Sharir, and Varadarajan that the total curvature of a shortest path on the boundary of a convex polyhedron in R3 cannot be arbitrarily large. It is shown here that the conjecture holds for a class of polytopes for which t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2003-08, Vol.30 (2), p.167-176
Hauptverfasser: B r ny, Imre, Kuperberg, Krystyna, Zamfirescu, Tudor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper gives a partial confirmation of a conjecture of Agarwal, Har-Peled, Sharir, and Varadarajan that the total curvature of a shortest path on the boundary of a convex polyhedron in R3 cannot be arbitrarily large. It is shown here that the conjecture holds for a class of polytopes for which the ratio of the radii of the circumscribed and inscribed ball is bounded. On the other hand, an example is constructed to show that the total curvature of a shortest path on the boundary of a convex polyhedron in R3 can exceed 2pi. Another example shows that the spiralling number of a shortest path on the boundary of a convex polyhedron can be arbitrarily large. [PUBLICATION ABSTRACT]
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-003-0001-z