Most Complex Regular Ideal Languages
A right ideal (left ideal, two-sided ideal) is a non-empty language LL over an alphabet ΣΣ such that L=LΣ∗L=LΣ∗ (L=Σ∗LL=Σ∗L, L=Σ∗LΣ∗L=Σ∗LΣ∗). Let k=3k=3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (Ln∣n≥kLn∣n≥k) of right, left, and two-sided reg...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2016-01, Vol.18 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A right ideal (left ideal, two-sided ideal) is a non-empty language LL over an alphabet ΣΣ such that L=LΣ∗L=LΣ∗ (L=Σ∗LL=Σ∗L, L=Σ∗LΣ∗L=Σ∗LΣ∗). Let k=3k=3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (Ln∣n≥kLn∣n≥k) of right, left, and two-sided regular ideals, where LnLn has quotient complexity (state complexity) nn, such that LnLn is most complex in its class under the following measures of complexity: the size of the syntactic semigroup, the quotient complexities of the left quotients of LnLn, the number of atoms (intersections of complemented and uncomplemented left quotients), the quotient complexities of the atoms, and the quotient complexities of reversal, star, product (concatenation), and all binary boolean operations. In that sense, these ideals are "most complex" languages in their classes, or "universal witnesses" to the complexity of the various operations. |
---|---|
ISSN: | 1365-8050 |