The small-sample properties of some preliminary test estimators in a linear model with autocorrelated errors
A Monte Carlo study is used to examine the finite-sample relative efficiency of a number of estimators (including pre-test estimators), and the accuracy of asymptotic confidence intervals derived from them, for a linear model with AR(1) or MA(1) errors. The bias of the ML estimator of the AR(1) para...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 1984-05, Vol.25 (1-2), p.49-61 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Monte Carlo study is used to examine the finite-sample relative efficiency of a number of estimators (including pre-test estimators), and the accuracy of asymptotic confidence intervals derived from them, for a linear model with AR(1) or MA(1) errors. The bias of the ML estimator of the AR(1) parameter, and the frequency of ML estimates equal to ±1 for the MA(1) parameter, have a large bearing on the properties of the estimators of the regression coefficient. The traditional OLS-AR pre-test estimator compares relatively favorably, even under an MA error specification. However, the confidence intervals associated with positive autoregressive errors and a trended explanatory variable can be quite inaccurate. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/0304-4076(84)90036-8 |