Structural recovery mechanism after shear induced orientation of multiwalled carbon nanotube in polypropylene matrix

In this work the flow induced orientation and the governing mechanism of structural recovery of multi-walled carbon nanotube (MWCNT) filled polypropylene nanocomposites were investigated. A series of linear and nonlinear melt rheological measurements including stress growth and time sweep experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer testing 2017-10, Vol.63, p.475-483
Hauptverfasser: Ghiassinejad, Sina, Ranjbar, Behnaz, Hosseinpour, Ali, Katbab, Aliasghar, Nazockdast, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work the flow induced orientation and the governing mechanism of structural recovery of multi-walled carbon nanotube (MWCNT) filled polypropylene nanocomposites were investigated. A series of linear and nonlinear melt rheological measurements including stress growth and time sweep experiments were performed at different temperatures to study the structural breakdown, nanoparticles orientation, subsequent structural recovery and MWCNT loadings. The results showed that the structural recovery occurred in two stages. The first stage, initial agglomeration, showed a quick recovery which was independent of temperature, can be interpreted in terms of inter-particle van der Waals interactions. This structural recovery stage had major contribution in the storage modulus increment. The second stage of the recovery, secondary agglomeration, was slower and dependent on temperature, can be attributed to rotary diffusion of nanoparticles. This stage had minor contribution to the storage modulus increase. Storage modulus increment in both of these agglomeration was attributed to the increase of nanotube-nanotube contacts. Both of these stages were confirmed by transmission electron micrographs. These result were in a good agreement with those calculated using van der Waals and diffusion concepts.
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2017.09.007