Approximation of Continuous Periodic Functions of Two Variables via Power Series Methods of Summability

We prove a Korovkin-type approximation theorem via power series methods of summability for continuous 2 π -periodic functions of two variables and verify the convergence of approximating double sequences of positive linear operators by using modulus of continuity. An example concerning double Fourie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2019-07, Vol.42 (4), p.1709-1717
Hauptverfasser: Yavuz, Enes, Talo, Özer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a Korovkin-type approximation theorem via power series methods of summability for continuous 2 π -periodic functions of two variables and verify the convergence of approximating double sequences of positive linear operators by using modulus of continuity. An example concerning double Fourier series is also constructed to illustrate the obtained results.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-017-0577-6