Approximation of Continuous Periodic Functions of Two Variables via Power Series Methods of Summability
We prove a Korovkin-type approximation theorem via power series methods of summability for continuous 2 π -periodic functions of two variables and verify the convergence of approximating double sequences of positive linear operators by using modulus of continuity. An example concerning double Fourie...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2019-07, Vol.42 (4), p.1709-1717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a Korovkin-type approximation theorem via power series methods of summability for continuous
2
π
-periodic functions of two variables and verify the convergence of approximating double sequences of positive linear operators by using modulus of continuity. An example concerning double Fourier series is also constructed to illustrate the obtained results. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-017-0577-6 |