Cube term blockers without finiteness

We show that an idempotent variety has a d -dimensional cube term if and only if its free algebra on two generators has no d -ary compatible cross. We employ Hall’s Marriage Theorem to show that an idempotent variety V of finite signature whose fundamental operations have arities n 1 , . . . , n k ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2017-12, Vol.78 (4), p.437-459
Hauptverfasser: Kearnes, Keith A., Szendrei, Ágnes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that an idempotent variety has a d -dimensional cube term if and only if its free algebra on two generators has no d -ary compatible cross. We employ Hall’s Marriage Theorem to show that an idempotent variety V of finite signature whose fundamental operations have arities n 1 , . . . , n k , has a d -dimensional cube term for some d if and only if it has one of dimension 1 + ∑ i = 1 k ( n i - 1 ) . This upper bound on the dimension of a minimal-dimension cube term for V is shown to be sharp. We show that a pure cyclic term variety has a cube term if and only if it contains no 2- element semilattice. We prove that the Maltsev condition “existence of a cube term” is join prime in the lattice of idempotent Maltsev conditions.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-017-0476-6