Cube term blockers without finiteness
We show that an idempotent variety has a d -dimensional cube term if and only if its free algebra on two generators has no d -ary compatible cross. We employ Hall’s Marriage Theorem to show that an idempotent variety V of finite signature whose fundamental operations have arities n 1 , . . . , n k ,...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2017-12, Vol.78 (4), p.437-459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that an idempotent variety has a
d
-dimensional cube term if and only if its free algebra on two generators has no
d
-ary compatible cross. We employ Hall’s Marriage Theorem to show that an idempotent variety
V
of finite signature whose fundamental operations have arities
n
1
, . . . ,
n
k
, has a
d
-dimensional cube term for some
d
if and only if it has one of dimension
1
+
∑
i
=
1
k
(
n
i
-
1
)
. This upper bound on the dimension of a minimal-dimension cube term for
V
is shown to be sharp. We show that a pure cyclic term variety has a cube term if and only if it contains no 2- element semilattice. We prove that the Maltsev condition “existence of a cube term” is join prime in the lattice of idempotent Maltsev conditions. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/s00012-017-0476-6 |