A Cantorian Argument against Infinitesimals

In 1887 Georg Cantor gave an influential but cryptic proof of the impossibility of infinitesimals. I first give a reconstruction of Cantor's argument which relies mainly on traditional assumptions from Euclidean geometry, together with elementary results of Cantor's own set theory. I then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2002-12, Vol.133 (3), p.305-330
1. Verfasser: Moore, Matthew E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1887 Georg Cantor gave an influential but cryptic proof of the impossibility of infinitesimals. I first give a reconstruction of Cantor's argument which relies mainly on traditional assumptions from Euclidean geometry, together with elementary results of Cantor's own set theory. I then apply the reconstructed argument to the infinitesimals of Abraham Robinson's nonstandard analysis. This brings out the importance for the argument of an assumption I call the Chain Thesis. Doubts about the Chain Thesis are seen to render the reconstructed argument inconclusive as an attack on the infinitely small.
ISSN:0039-7857
1573-0964
DOI:10.1023/A:1021204522829