An adaptive O(log n)‐optimal policy for the online selection of a monotone subsequence from a random sample

Given a sequence of n independent random variables with common continuous distribution, we propose a simple adaptive online policy that selects a monotone increasing subsequence. We show that the expected number of monotone increasing selections made by such a policy is within O(log⁡n) of optimal. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2018-01, Vol.52 (1), p.41-53
Hauptverfasser: Arlotto, Alessandro, Wei, Yehua, Xie, Xinchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a sequence of n independent random variables with common continuous distribution, we propose a simple adaptive online policy that selects a monotone increasing subsequence. We show that the expected number of monotone increasing selections made by such a policy is within O(log⁡n) of optimal. Our construction provides a direct and natural way for proving the O(log⁡n)‐optimality gap. An earlier proof of the same result made crucial use of a key inequality of Bruss and Delbaen [5] and of de‐Poissonization.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20728