Characterizations of (4K1, C4, C5)-free graphs

Given a set L of graphs, a graph G is L-free if G does not contain any graph in L as an induced subgraph. There has been keen interest in colouring graphs whose forbidden list L contains graphs with four vertices. A recent paper of Lozin and Malyshev (in press) discusses the state of the art on this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2017-11, Vol.231, p.166-174
Hauptverfasser: Fraser, Dallas J., Hamel, Angèle M., Hoàng, Chính T., Holmes, Kevin, LaMantia, Tom P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a set L of graphs, a graph G is L-free if G does not contain any graph in L as an induced subgraph. There has been keen interest in colouring graphs whose forbidden list L contains graphs with four vertices. A recent paper of Lozin and Malyshev (in press) discusses the state of the art on this problem, identifying three outstanding classes: L=(4K1,claw), L=(4K1,claw, co-diamond), and L=(4K1,C4). In this paper we investigate the class of (4K1, C4, C5)-free graphs and show that if G is a (4K1, C4, C5)-free graph, then G either has bounded clique width or is perfect.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2016.08.016